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Abstract. The computational cost of a spectral model using spherical harmonics (SH) increases significantly at high resolution 

because the transform method with SH requires O 𝑁  operations, where 𝑁 is the truncation wavenumber. One way to solve 

this problem is to use double Fourier series (DFS) instead of SH, which requires O 𝑁 log 𝑁  operations. This paper proposes 

a new DFS method that improves the numerical stability of the model compared with the conventional DFS methods by 

adopting the following two improvements: a new expansion method that employs the least-squares method (or the Galerkin 10 

method) to calculate the expansion coefficients in order to minimize the error caused by wavenumber truncation, and new 

basis functions that satisfy the continuity of both scalar and vector variables at the poles. In the semi-implicit semi-Lagrangian 

shallow water model using the new DFS method, the Williamson test cases 2 and 5 and the Galewsky test case give stable 

results without the appearance of high-wavenumber noise near the poles, even without using horizontal diffusion and a zonal 

Fourier filter. The new DFS model is faster than the SH model, especially at high resolutions, and gives almost the same results. 15 

1 Introduction 

Global spectral atmospheric models using the spectral transform method with spherical harmonics (SH) as basis functions 

are widely used. They are used in the Japan Meteorological Agency (JMA, 2019) and the Meteorological Research Institute 

(MRI; Yukimoto et al., 2011, 2019) for a range of applications, including operational weather prediction, operational seasonal 

prediction, and global warming projection. The spectral model has the advantage that the accuracy in horizontal derivatives is 20 

good, and the semi-implicit scheme, which improves numerical stability, can be easily applied because the Helmholtz equation 

and the Poisson equation are easily solved in spectral space. The application of the semi-implicit semi-Lagrangian scheme 

allows for timesteps longer than the Courant–Friedrichs–Lewy (CFL) condition, which makes the model computationally 

efficient. In the spectral model using SH, the Legendre transform used in the latitudinal direction significantly increases the 

computational cost at high resolutions since the Legendre transform usually requires O 𝑁  operations and O 𝑁  memory 25 

usage, where 𝑁 is the truncation wavenumber. One way to reduce the operation count and the memory usage at high resolutions 

with large 𝑁  is to use the fast Legendre transform (Suda, 2005; Tygert, 2008; Wedi et al., 2013), which requires only 

O 𝑁 log 𝑁  operations, although the accuracy is compromised to reduce the operation count. Dueben et al. (2020) 

presented global simulations of the atmosphere at 1.45 km grid-spacing in the SH model using the fast Legendre transform. 
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Another approach used to improve the Legendre transform is on-the-fly computation of the associated Legendre functions 

(Schaeffer, 2013; Ishioka, 2018), which still requires O 𝑁  operations but requires only O 𝑁  memory usage. This small 

memory usage also contributes to speeding up calculations by taking advantage of the cache memory. 

Another way to reduce the operation count and the memory usage in the global spectral model is to use double Fourier series 

(DFS) as basis functions. In the DFS model, the fast Fourier transform (FFT; Cooley and Tukey, 1965; Swarztrauber, 1982) 5 

is used not only in the longitudinal (zonal) direction but also in the latitudinal (meridional) direction. The FFT requires only 

O 𝑁 log 𝑁  operations and O 𝑁  or O 𝑁  memory usage, and it is much faster than the fast Legendre transform.  

In DFS models (and also in SH models), the scalar variable 𝐹 𝜆, 𝜃  is zonally expanded as 

𝐹 𝜆, 𝜃 ≅ 𝐹 𝜃 𝑒 ,                                                                                    1  

where 𝜆 is longitude, 𝜃 is colatitude, and 𝑀 is the zonal truncation wavenumber. Several methods have been proposed for 10 

meridional expansion with DFS. Merilees (1973b), Boer and Steinberg (1975), and Spotz et al. (1998) performed the Fourier 

transform meridionally along a great circle. Spotz et al. (1998) showed that by using the spherical harmonic filter, the explicit 

DFS shallow water model using the pseudo-spectral method can produce results comparable with the SH model in terms of 

accuracy and stability. However, the spherical harmonic filter consists of the forward SH transform (from grid space to spectral 

space) followed by the inverse SH transform (from spectral space to grid space), which increases the computational cost. 15 

Orszag (1974) and Boyd (1978) expanded 𝐹 𝜃  meridionally as  

𝐹 𝜃 ≅
𝑓 𝜃                         for even 𝑚,
sin 𝜃 𝑓 𝜃               for odd 𝑚,

                                                                    2a  

𝑓 𝜃 ≡ 𝑓 , cos 𝑛𝜃,                                                                                        2b  

where 𝑁 is the meridional truncation wavenumber. The coefficients 𝑓 ,  for odd 𝑚 are calculated from the forward Fourier 

cosine transform of 𝐹 𝜃 sin 𝜃⁄ . Orszag (1974) imposed the following conditions at the poles: 20 

𝑓 0 0 and 𝑓 𝜋 0 for |𝑚| 2,                                                                    3  

which can be expressed in terms of the expansion coefficients 𝑓 ,  as 

𝑓 ,

  

0  and 𝑓 ,

  

0   for |𝑚| 2.                                                         4  

Satisfying the above conditions ensures that the scalar variable 𝐹 𝜆, 𝜃  and its gradient ∇𝐹 are continuous at the poles. In 

Orszag (1974), only 𝑓 ,  and 𝑓 ,  were modified to satisfy Eq. 4 , but this is not the best way to satisfy the same conditions 25 

as Eq. 3  or Eq. 4 , as will be shown in Sect. 3. 

Yee (1981) and Layton and Spotz (2003) expanded 𝐹 𝜃  as 
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𝐹 𝜃

⎩
⎪
⎨

⎪
⎧ 𝐹 , cos 𝑛𝜃                         for even 𝑚,

𝐹 , sin 𝑛𝜃                         for odd 𝑚.  

                                                        5  

In the semi-implicit semi-Lagrangian shallow water model in Layton and Spotz (2003), the spherical harmonic filter was 

applied to the prognostic variables for stability and accuracy. Layton and Spotz (2003) explained that the expansion with Eq. 

5  permits discontinuity at the poles and nonisotropic waves, which may lead to a prohibitive timestep restriction and 

numerical instability, and these problems can be avoided by applying the spherical harmonic filter. 5 

Cheong (2000a, 2000b) proposed expanding 𝐹 𝜃  as 

𝐹 𝜃 ≅

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐹 , cos 𝑛𝜃                 for 𝑚 0,                       

𝐹 , sin 𝑛𝜃                  for odd 𝑚,                       

𝐹 , sin 𝜃 sin 𝑛𝜃       for even 𝑚 0 .          

                                           6  

The meridional basis functions sin 𝜃 sin 𝑛𝜃 for even 𝑚 0  are different from Eq. 5 . The coefficients 𝐹 ,  for even 𝑚 

0  are calculated by forward Fourier sine transform of 𝐹 𝜃 sin 𝜃⁄ . The basis functions in Eq. 6  automatically satisfy the 

same conditions at the poles as Eq. 3  for even 𝑚, and guarantee the continuity of the scalar variable 𝐹 at the poles, which is 10 

an advantage compared with the basis functions in Eq. 5 . However, Eq. 6  does not automatically satisfy the conditions in 

Eq. 3  for odd 𝑚, and does not guarantee the continuity of ∇𝐹 at the poles. The shallow water model and the vorticity equation 

model using a semi-implicit Eulerian scheme ran stably using high-order horizontal diffusion with O 𝑁  operations to smooth 

out the high-wavenumber components (Cheong, 2000b; Cheong et al., 2002; Kwon et al., 2004). The semi-implicit Eulerian 

hydrostatic atmospheric model also ran stably with high-order horizontal diffusion (Cheong, 2006; Koo and Hong, 2013; Park 15 

et al., 2013). However, the computational results of these models appear to be a little different from (slightly worse than) the 

models using SH. One reason for this seems to be the appearance of high-wavenumber oscillation resulting from the meridional 

wavenumber truncation with 𝑁 ≅ 2𝐽 3⁄  or 𝐽 2⁄  for even 𝑚 0  (See Sect. 3), and the use of strong high-order horizontal 

diffusion to smooth out the oscillation, where 𝐽 is the number of grid points in the latitudinal direction.  

Yoshimura and Matsumura (2005) and Yoshimura (2012) stably ran the two-time-level semi-implicit semi-Lagrangian 20 

hydrostatic and nonhydrostatic atmospheric models using the DFS basis functions of Cheong in Eq. 6 . These models used 

meridional truncation with 𝑁 ≅ 𝐽, and 𝑈 𝑢 sin 𝜃 and 𝑉 𝑣 sin 𝜃 (instead of 𝑢 sin 𝜃⁄  and 𝑣 sin 𝜃⁄ ) were transformed from 

grid space to spectral space, where 𝑢 is the zonal wind and 𝑣 is the meridional wind. These models used the same horizontal 

diffusion as the SH models, and did not require the strong high-order horizontal diffusion. The results of these models were 

very similar to those of the SH models. However, we found the following two problems in these models:  25 
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1. High wavenumber noise appears near the poles. 

2. The meridional wavenumber truncation 𝑁 needs to be equal to 𝐽 for even 𝑚 0  because 𝑁  𝐽 (e.g., 𝑁 ≅ 2𝐽 3⁄ ) causes 

the high-wavenumber oscillation and the numerical instability (See Sect. 3). 

To solve these problems, we propose a new DFS method that adopts the following two improvements: 

1. A new expansion method to calculate DFS expansion coefficients of scalar and vector variables, which adopts the least-5 

squares method (or the Galerkin method) to minimize the error due to the meridional wavenumber truncation.  

2 New DFS basis functions that automatically satisfy the pole conditions in Eq. 3 , which guarantee continuity of not only 

scalar variables but also vector variables at the poles. 

We also use the Galerkin method to solve partial differential equations such as the Poisson equation and the shallow water 

equations. 10 

Section 2 describes the details of the new DFS method using the new DFS expansion method and the new DFS basis 

functions. Section 3 examines the error due to the wavenumber truncation in the new DFS method, Orszag’s DFS method, and 

Cheong’s DFS method. Section 4 describes how to integrate the semi-implicit semi-Lagrangian shallow water model using the 

new DFS method. Section 5 compares the results of the model using the new DFS method with those using the old DFS method 

of Yoshimura and Matsumura (2005), and with those using the SH method. Section 6 presents conclusions and perspectives. 15 

2 Improved double Fourier series on the sphere 

2.1 New basis functions for a scalar variable 

We propose the following new DFS basis functions that automatically satisfy the continuity conditions at the poles in Eq. 

3 . The scalar variable 𝑇 𝜆, 𝜃  is expanded zonally as 

𝑇 𝜆, 𝜃 ≅ 𝑇 𝜃 cos 𝑚𝜆 𝑇 𝜃 sin 𝑚𝜆,                                                                    7  20 

and the variables 𝑇 𝜃  and 𝑇 𝜃  are meridionally expanded as 

𝑇 𝜃 ≅ 𝑇 , 𝜃 ≡

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑇 , cos 𝑛𝜃                   for 𝑚 0,                        

𝑇 , sin 𝜃 cos 𝑛𝜃        for 𝑚 1,                        

𝑇 , sin 𝜃 sin 𝑛𝜃         for even 𝑚 2,               

𝑇 , sin 𝜃 sin 𝑛𝜃       for odd 𝑚 3,               

                          8a  
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𝑇 𝜃 ≅ 𝑇 , 𝜃 ≡

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑇 , sin 𝜃 cos 𝑛𝜃         for 𝑚 1,           

𝑇 , sin 𝜃 sin 𝑛𝜃        for even 𝑚 2,

𝑇 , sin 𝜃 sin 𝑛𝜃      for odd 𝑚 3.   

                                       8b  

In Eq. 7 , cos 𝑚𝜆 and sin 𝑚𝜆 are used instead of 𝑒  as zonal basis functions for convenience in calculating the expansion 

coefficients using the least-squares method described later in Sects. 2.3 and 2.7. In Eq. 8 , the meridional basis functions 

sin 𝜃 sin 𝑛𝜃 for odd 𝑚 3 are especially different from Cheong’s basis functions in Eq. 6 . Either sin 𝑛𝜃 or sin 𝜃 cos 𝑛𝜃 

can be used as the basis functions for 𝑚 1  because it can be shown using Eq. (A2) from Appendix A that 5 

sin 𝜃 cos 𝑛𝜃  𝑛 0, … , 𝑁 1  are the linear combination of sin 𝑛𝜃 𝑛 1, … , 𝑁 , and vice versa. Here we use sin 𝜃 cos 𝑛𝜃 

for 𝑚 1 because it can be more easily divided by sin 𝜃, which is convenient for calculating ∇𝑇. 

Using Eq. A2 , Eq. 8  can be transformed as follows: 

𝑇 , 𝜃

⎩
⎪
⎨

⎪
⎧ 𝑇 , cos 𝑛𝜃        for even 𝑚,

𝑇 , sin 𝑛𝜃        for odd 𝑚,

                                                                                  9  

where 10 

𝑇 , 𝑇 ,                                                             for 𝑚 0,                                          10a  

𝑇 ,
𝑇 , 𝑇 ,

2
                                     for 𝑚 1                                          10b  

except for 𝑇 ,
2𝑇 , 𝑇 ,

2
,                                                                                 

𝑇 ,
𝑇 , 𝑇 ,

2
                                for even 𝑚 2,                                 10c  

𝑇 ,
𝑇 , 2𝑇 , 𝑇 ,

4
               for odd 𝑚 3                                    10d  15 

except for 𝑇 ,
3𝑇 , 𝑇 ,

4
.                                                                                 

The equations for 𝑇 , 𝜃  and 𝑇 ,  for 𝑚 1 are the same as Eqs. 9  and 10 , except that the superscript c is replaced with 

the superscript s. The upper limit of 𝑛 for each 𝑚 in Eq. 8  is determined so that the upper limit of 𝑛 for each 𝑚 in Eq. 9  

becomes 𝑁. 

When calculating the values of 𝑇 , 𝜃  (𝑇 , 𝜃 ) in grid space from 𝑇 ,  (𝑇 , ) in spectral space, the coefficients 𝑇 ,  20 

(𝑇 , ) are calculated from 𝑇 ,  (𝑇 , ) using Eq. 10  and inverse discrete cosine and sine transforms are performed using Eq. 

https://doi.org/10.5194/gmd-2021-168
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



6 
 

9  (See Sect. 2.10). The calculation of 𝑇 ,  (𝑇 , ) in spectral space from 𝑇 𝜃  (𝑇 𝜃 ) in grid space is described in Sect. 

2.3 below. 

The truncated variable 𝑇 , 𝜆, 𝜃  is defined as 

𝑇 , 𝜆, 𝜃 ≡ 𝑇 , 𝜃 cos 𝑚𝜆 𝑇 , 𝜃 sin 𝑚𝜆.                                              11  

From Eq. 8 , the values of 𝑇 , 𝜃  at the poles are finite for 𝑚 0, and the values of 𝑇 , 𝜃  and 𝑇 , 𝜃  at the poles are 5 

zero for 𝑚 0. Therefore 𝑇 , 𝜆, 𝜃  is continuous at the poles. 

2.2 Gradient of a scalar variable 

The gradient ∇𝑇 , 𝑇 , , 𝑇 ,  is obtained as follows: 

𝑇 , ≡
1

𝑎 sin 𝜃
𝜕𝑇 ,

𝜕𝜆
𝑇 ,

, 𝜃 cos 𝑚𝜆 𝑇 ,
, 𝜃 sin 𝑚𝜆,                                     12a  

𝑇 ,
, 𝜃 ≡

𝑚
𝑎 sin 𝜃

𝑇 , 𝜃 ,    𝑇 ,
, 𝜃 ≡

𝑚
𝑎 sin 𝜃

𝑇 , 𝜃 ,                                        12b  10 

𝑇 , ≡
1
𝑎

𝜕𝑇 ,

𝜕𝜙
1
𝑎

𝜕𝑇 ,

𝜕𝜃
𝑇 ,

, 𝜃 cos 𝑚𝜆 𝑇 ,
, 𝜃 sin 𝑚𝜆,                     13a  

𝑇 ,
, 𝜃 ≡

1
𝑎

𝜕𝑇 , 𝜃
𝜕𝜃

,    𝑇 ,
, 𝜃 ≡

1
𝑎

𝜕𝑇 , 𝜃
𝜕𝜃

,                                               13b  

where 𝑎 is the radius of the earth, and 𝜙 is the latitude. From Eqs. 12b , 8  and A2  we obtain 

𝑇 ,
, 𝜃

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0                                                                                             for 𝑚 0,

𝑇 , , cos 𝑛𝜃                                                                for 𝑚 1,

𝑇 , , sin 𝑛𝜃                                                       for even 𝑚 2,

𝑇 , , cos 𝑛𝜃 𝑇 , , sin 𝜃 sin 𝑛𝜃   for odd 𝑚 3,

                                 14  

where 15 

𝑇 , ,
1
𝑎

𝑇 ,                                                                    for 𝑚 1,                             15a  

𝑇 , ,
1
𝑎

𝑚𝑇 ,                                                         for even 𝑚 2,                          15b  

𝑇 , ,
1
𝑎

𝑚 𝑇 , 𝑇 ,

2
                             for odd 𝑚 3.                          15c  
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The equation for 𝑇 ,
, 𝜃  is the same as Eq. 14 , except that the subscript c is replaced with s. The equations for 𝑇 , ,  are 

the same as Eq. 15 , except that 𝑇 , ,  and 𝑇 ,  are replaced with 𝑇 , ,  and 𝑇 , , respectively. From Eqs. 13b , 9 , and 

10  we obtain 

𝑇 ,
, 𝜃

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑇 , , sin 𝑛𝜃                                                                  for 𝑚 0,

𝑇 , , cos 𝑛𝜃                                                                  for 𝑚 1,

𝑇 , , sin 𝑛𝜃                                                         for even 𝑚 2,

𝑇 , , cos 𝑛𝜃 𝑇 , , sin 𝜃 sin 𝑛𝜃     for odd 𝑚 3,

                                    16  

where 5 

𝑇 , ,
1
𝑎

𝑛𝑇 ,                                                             for 𝑚 0,                              17a  

 𝑇 , ,
1
𝑎

𝑛 𝑇 , 𝑇 ,

2
                                    for 𝑚 1                                17b  

except for 𝑇 , ,
1
𝑎

2𝑇 , 𝑇 ,

2
,                                                                         

 𝑇 , ,
1
𝑎

𝑛 𝑇 , 𝑇 ,

2
                             for even 𝑚 2,                            17c  

𝑇 , ,
1
𝑎

𝑛 𝑇 , 2𝑇 , 𝑇 ,

4
             for odd 𝑚 3                           17d  10 

except for 𝑇 , ,
1
𝑎

3𝑇 , 𝑇 ,

4
.                                                                    

The equations for 𝑇 ,
, 𝜃  and 𝑇 , ,  for 𝑚 1 are the same as Eqs. 16  and 17 , except that the subscript c is replaced 

with s. From Eqs. 14  to 17 , it can be seen that 𝑇 ,
, 𝜃 , 𝑇 ,

, 𝜃 , 𝑇 ,
, 𝜃 , and 𝑇 ,

, 𝜃  at the poles are finite for 𝑚 1 

and zero for 𝑚 1, and moreover the following relations are satisfied for 𝑚 1: 

𝑇 ,
, 𝜃 𝑇 ,

, 𝜃
1
𝑎

𝑇 ,        at 𝜃 0 North Pole ,                                    18a  15 

𝑇 ,
, 𝜃 𝑇 ,

, 𝜃
1
𝑎

𝑇 ,        at 𝜃 0 North Pole ,                                    18b  

𝑇 ,
, 𝜃 𝑇 ,

, 𝜃
1
𝑎

1 𝑇 ,        at 𝜃 𝜋 South Pole ,                             18c  
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𝑇 ,
, 𝜃 𝑇 ,

, 𝜃
1
𝑎

1 𝑇 ,    at 𝜃 𝜋 South Pole .                          18d  

Thus, it is guaranteed that ∇𝑇 , 𝑇 , , 𝑇 ,  is continuous at the poles. 

2.3 New method to calculate expansion coefficients for a scalar variable 

One way to calculate the coefficients 𝑇 ,  (𝑇 , ) from 𝑇 𝜃  (𝑇 𝜃 ) in Eq. 8  is to perform a forward cosine transform 

of 𝑇 𝜃 sin 𝜃⁄  (𝑇 𝜃 sin 𝜃⁄ ) for 𝑚 1, a cosine transform of 𝑇 𝜃 sin 𝜃⁄  (𝑇 𝜃 sin 𝜃⁄ ) for even 𝑚 2, and a sine 5 

transform of 𝑇 𝜃 sin 𝜃⁄  ( 𝑇 𝜃 sin 𝜃⁄ ) for odd 𝑚 3 . However, this approach with the meridional wavenumber 

truncation 𝑁  𝐽 leads to the large high-wavenumber oscillation as in Cheong’s basis functions for even 𝑚 2 (See Sect. 3). 

Dividing 𝑇 𝜃  by sin 𝜃 reduces the numerical stability of the model more significantly than dividing 𝑇 𝜃  by sin 𝜃. 

Here we propose a new method to calculate expansion coefficients using the least-squares method to minimize the error due 

to the meridional wavenumber truncation. This method also avoids dividing 𝑇 𝜃  by sin 𝜃 or sin 𝜃 before the forward 10 

cosine or sine transforms. The coefficients 𝑇 ,  and 𝑇 ,  in Eq. 8  are calculated as follows. First, 𝑇 𝜃  and 𝑇 𝜃  in Eq. 

8  are expanded like Eq. 5  as 

𝑇 𝜃 ≅ 𝑇 , 𝜃 ≡

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑇 , cos 𝑛𝜃                  for even 𝑚,

𝑇 , sin 𝑛𝜃                  for odd 𝑚,

 

                                              19  

where 𝐽 is the number of meridional grid points, and the expansion coefficients 𝑇 ,  are calculated by the forward discrete 

cosine transform for even 𝑚 and the forward discrete sine transform for odd 𝑚 from the values of 𝑇 𝜃  at the grid points 15 

(See Sect. 2.10). The equation for 𝑇 𝜃  is the same as Eq. 19 , except that the subscript c is replaced with s. 

   Next, 𝑇 ,  and 𝑇 ,  are calculated using the least-squares method to minimize the following error 𝐸 (the squared L  norm o

f the residual): 

𝐸 ≡
1

2𝜋
𝑅 𝜆, 𝜃 𝑑𝜃𝑑𝜆,                                                                                                                                          20  

where the residual 𝑅 𝜆, 𝜃  is 20 

𝑅 𝜆, 𝜃 ≡ 𝑇 , 𝜃 cos 𝑚𝜆 𝑇 , 𝜃 sin 𝑚𝜆 𝑇 , 𝜃 cos 𝑚𝜆 𝑇 , 𝜃 sin 𝑚𝜆 .   21  

From Eqs. 20 , 21 , and A3 , we derive 

𝐸
1
𝜋

𝑇 , 𝜃 𝑇 , 𝜃
1
2

𝑇 , 𝜃 𝑇 , 𝜃
1
2

𝑇 , 𝜃 𝑇 , 𝜃 𝑑𝜃.            22  
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Eqs. 9 , 10 , and 19  are substituted into Eq. 22 . The equations 𝜕𝐸 𝜕⁄ 𝑇 , 0 and 𝜕𝐸 𝜕⁄ 𝑇 , 0  are used to 

calculate 𝑇 ,  and 𝑇 , , respectively, so that 𝐸 is minimized. 

From 𝜕𝐸 𝜕⁄ 𝑇 , 0 and Eq. A4 , we derive 

𝜕
𝜕𝑇 ,

2 𝑇 , 𝑇 , 𝑇 , 𝑇 , 0         for even 𝑚,                             23a  

𝜕
𝜕𝑇 ,

𝑇 , 𝑇 , 0                                             for odd 𝑚.                               23b  5 

From Eq. 23  and 10 , we derive the following equations for 𝑇 , . 

For 𝑚 0, 

𝑇 ,  𝑇 ,     0 𝑛 𝑁 .                                                                            24a  

For 𝑚 1, 

𝑇 , 2𝑇 , 𝑇 , 2𝑇 , 2𝑇 ,        0 𝑛 𝑁 1 ,                      24b  10 

with the exception of the following underlined values: 

1𝑇 , 𝑇 , 2𝑇 ,                          𝑛 1 ,                                              

2𝑇 , 2𝑇 , 𝑇 , 2𝑇 , 2𝑇 ,           𝑛 2 .                                             

For even 𝑚 2 , 

𝑇 , 2𝑇 , 𝑇 , 2𝑇 , 2𝑇 ,        1 𝑛 𝑁 1 ,               24c  15 

with the exception of the following underlined values: 

3𝑇 , 𝑇 , 4𝑇 , 2𝑇 ,                     𝑛 1 .                                            

For odd 𝑚 3 , 

𝑇 , 4𝑇 , 6𝑇 , 4𝑇 , 𝑇 ,  4𝑇 , 8𝑇 ,  4𝑇 ,   1 𝑛 𝑁 2 ,   24d  

with the exception of the following underlined values: 20 

10𝑇 , 5𝑇 , 𝑇 , 12𝑇 ,  4𝑇 ,                        𝑛 1 ,                                      

5𝑇 , 4𝑇 , 𝑇 , 8𝑇 ,  4𝑇 ,                           𝑛 2 ,                                      

5𝑇 , 6𝑇 , 4𝑇 , 𝑇 , 4𝑇 , 8𝑇 ,  4𝑇 ,          𝑛 3 .                                      

From Eq. 24d , two linear simultaneous equations with penta-diagonal matrices, 

⎣
⎢
⎢
⎢
⎢
⎡
∗ ∗ ∗ 0 0 0 ⋯ 0
∗ ∗ ∗ ∗ 0 0 ⋯ 0
∗ ∗ ∗ ∗ ∗ 0 ⋯ 0
0 ∗ ∗ ∗ ∗ ∗ ⋯ 0
    ⋮    
0 0 0 ⋯ 0 ∗ ∗ ∗⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇 ,

𝑇 ,

𝑇 ,

𝑇 ,

⋮
⋮ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
∗
∗
∗
∗
⋮
∗⎦

⎥
⎥
⎥
⎥
⎤

,   

⎣
⎢
⎢
⎢
⎢
⎡
∗ ∗ ∗ 0 0 0 ⋯ 0
∗ ∗ ∗ ∗ 0 0 ⋯ 0
∗ ∗ ∗ ∗ ∗ 0 ⋯ 0
0 ∗ ∗ ∗ ∗ ∗ ⋯ 0
    ⋮    
0 0 0 ⋯ 0 ∗ ∗ ∗⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇 ,

𝑇 ,

𝑇 ,

𝑇 ,

⋮
⋮ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
∗
∗
∗
∗
⋮
∗⎦

⎥
⎥
⎥
⎥
⎤

                 25  25 

are derived. A penta-diagonal matrix can be LU decomposed as 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
∗ ∗ ∗ 0 0 0 ⋯ 0
∗ ∗ ∗ ∗ 0 0 ⋯ 0
∗ ∗ ∗ ∗ ∗ 0 ⋯ 0
0 ∗ ∗ ∗ ∗ ∗ ⋯ 0
    ⋮    
0 0 ⋯ 0 ∗ ∗ ∗ ∗
0 0 ⋯ 0 0 ∗ ∗ ∗⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝐋𝐔,   𝐋 ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∗ 0 0 0 0 0 ⋯ 0
∗ ∗ 0 0 0 0 ⋯ 0
∗ ∗ ∗ 0 0 0 ⋯ 0
0 ∗ ∗ ∗ 0 0 ⋯ 0
    ⋮    
0 0 ⋯ 0 ∗ ∗ ∗ 0
0 0 ⋯ 0 0 ∗ ∗ ∗⎦

⎥
⎥
⎥
⎥
⎥
⎤

,   𝐔 ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 ∗ ∗ 0 0 0 ⋯ 0
0 1 ∗ ∗ 0 0 ⋯ 0
0 0 1 ∗ ∗ 0 ⋯ 0
0 0 0 1 ∗ ∗ ⋯ 0
    ⋮    
0 0 ⋯ 0 0 0 1 ∗
0 0 ⋯ 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

.  26  

To solve 𝐋𝐔𝒙 𝒃, we solve 𝐋𝒚 𝒃 with forward substitution first, and then solve 𝐔𝒙 𝒚 with backward substitution. There 

are also other methods to solve Eq. 25 . For example, the method using LU decomposition considering penta-diagonal 

matrices as 2 2 block tri-diagonal matrices makes SIMD operations more effective. The method using cyclic reduction for 

block tri-diagonal matrices (e.g., Gander and Golub, 1997) is suitable for vectorization and parallelization. The calculation 5 

with these methods for each 𝑚 requires O 𝑁  operations. The simultaneous equations with tri-diagonal matrices derived from 

Eqs. 24b, c  can be solved in a similar way to Eq. 25 . Therefore, the calculation of 𝑇 ,  for all 𝑚 and 𝑛 with Eq. 24  

requires only O 𝑁  operations. 

The equations for 𝑇 ,  are derived from 𝜕𝐸 𝜕⁄ 𝑇 , 0; these are the same equations as Eqs. 24b, c, d , except that the 

subscript c is replaced with s. 10 

2.4 Relation between the least-squares method and Galerkin method for a scalar variable 

Here we discuss the relation between the least-squares method described above and the Galerkin method when calculating 

the expansion coefficients of a scalar variable.  

From Eqs. 20  and 21  and the equations 𝜕𝐸 𝜕𝑇 ,⁄ 0 and 𝜕𝐸 𝜕𝑇 ,⁄ 0 used in the least-squares method, we obtain 

1
2𝜋

𝜕𝑇 , 𝜃
𝜕𝑇 ,

cos 𝑚𝜆 𝑅 𝜆, 𝜃 𝑑𝜃𝑑𝜆 0,                                                           27a  15 

1
2𝜋

𝜕𝑇 , 𝜃
𝜕𝑇 ,

sin 𝑚𝜆 𝑅 𝜆, 𝜃 𝑑𝜃𝑑𝜆 0.                                                            27b  

From Eq. 8 , we derive 

𝜕𝑇 , 𝜃
𝜕𝑇 ,

𝜕𝑇 , 𝜃
𝜕𝑇 ,

𝑆 , 𝜃 ,                                                                                28  

where the functions of 𝑆 , 𝜃  are the new DFS meridional basis functions defined as 

𝑆 , 𝜃 ≡

cos 𝑛𝜃                  for 𝑚 0,                         
sin 𝜃 cos 𝑛𝜃        for 𝑚 1,                         
sin 𝜃 sin 𝑛𝜃         for even 𝑚 2,               
sin 𝜃 sin 𝑛𝜃       for odd 𝑚 3.                 

                                                 29  20 

Equation 27  shows that the residual 𝑅 𝜆, 𝜃  is orthogonal to each of the new DFS basis functions 𝑆 , 𝜃 cos 𝑚𝜆 and 

𝑆 , 𝜃 sin 𝑚𝜆, which means that Eq. 27  is the same as the equation derived using the Galerkin method. Thus, the equations 
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𝜕𝐸 𝜕𝑇 ,⁄ 0 and 𝜕𝐸 𝜕𝑇 ,⁄ 0 used in the least-squares method described in Sect. 2.3 are the same as those derived with 

the Galerkin method. 

2.5 Comparison of new DFS with SH 

Here we compare the new DFS method with the SH method to see the difference between them. In the SH method, 𝑇 𝜃  

and 𝑇 𝜃  in Eq. 7  are expanded with the associated Legendre functions 𝑃 , 𝜃  as 5 

𝑇 𝜃 ≅ 𝑇 , , 𝜃 ≡ 𝑇 ,
, 𝑃 , 𝜃 ,                                                                30a  

𝑇 𝜃 ≅ 𝑇 , , 𝜃 ≡ 𝑇 ,
, 𝑃 , 𝜃 ,                                                               30b  

where 𝑚 0. The functions 𝑃 , 𝜃  satisfy the following orthogonality relations for each 𝑚: 

𝑃 , 𝜃 𝑃 , 𝜃 sin 𝜃 𝑑𝜃 1     for 𝑛 𝑛 ,
0     for 𝑛 𝑛 .

                                                     31  

By the modified Robert expansion (Merilees, 1973a; Orszag, 1974), the associated Legendre functions 𝑃 , 𝜃  are expressed 10 

as 

𝑃 , 𝜃 𝑎 , , sin| | 𝜃 cos 𝑙𝜃 .

| |

 | |   

                                                    32  

Conversely, the functions sin| | 𝜃 cos 𝑛 |𝑚| 𝜃  𝑛 |𝑚|  can be expressed as the linear combination of 𝑃 , 𝜃   𝑙

|𝑚|, … , 𝑛 . Substituting Eq. 32  into Eq. 30  gives the following equations. 

𝑇 , , 𝜃 𝑇 ,
, sin 𝜃 cos 𝑛𝜃,                                                            33a  15 

𝑇 , , 𝜃 𝑇 ,
, sin 𝜃 cos 𝑛𝜃,                                                            33b  

where 𝑚 0. Equation 33  is similar to Eq. 8  in the following sense: the basis functions for 𝑚 0 and 𝑚 1 in Eq. 33  

are the same as in Eq. 8 . The basis functions sin 𝜃 cos 𝑛𝜃  𝑛 0, … , 𝑁 2  for 𝑚 2 and sin 𝜃 cos 𝑛𝜃 𝑛 0, … , 𝑁

3  for 𝑚 3 in Eq. 33  are the linear combinations of sin 𝜃 sin 𝑛𝜃 𝑛 1, … , 𝑁 1  and sin 𝜃 sin 𝑛𝜃 𝑛 1, … , 𝑁 2  

in Eq. 8 , respectively (see Eq. A2a , and vice versa. The basis functions for 𝑚 4 in Eq. 33  are different from those in 20 

Eq. 8 . The number of expansion coefficients in Eq. 30  or Eq. 32  in the SH method is smaller than in Eq. 8  in the new 

DFS method for each 𝑚 4. From Eqs. 7  and 30 , the number of expansion coefficients 𝑇 ,
,  in the SH model is about 

𝑁 2⁄  when 𝑀 𝑁. The triangular truncation used in the SH method gives a uniform resolution over the sphere. From Eqs. 

 7  and 8 , the number of the expansion coefficients 𝑇 ,  in the DFS method is about 𝑁  when 𝑀 𝑁. The rectangular 
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truncation used in the DFS model gives almost the same resolution as the grid spacing of the regular longitude–latitude grids. 

Therefore, the zonal Fourier filter (see Sect. 2.11) is used in the DFS model to give a more uniform resolution. 

We compare the method used to calculate the expansion coefficients in the new DFS method with that in the SH method. 

The SH expansion coefficients 𝑇 ,
,  and 𝑇 ,

,  in Eq. 30  are usually calculated from the grid-point values of 𝑇 𝜃  and 

𝑇 𝜃 , respectively, by using Gaussian quadrature or Clenshaw–Curtis quadrature (e.g., Hotta and Ujiie, 2018). They can also 5 

be calculated from 𝑇 , 𝜃  and 𝑇 , 𝜃  in Eq. 19  instead of 𝑇 𝜃  and 𝑇 𝜃  at the grid points as follows (e.g., Sneeuw and 

Bun, 1996): 

𝑇 ,
, 𝑇 , 𝜃 𝑃 , 𝜃 sin 𝜃 𝑑𝜃,                                                                         34a  

𝑇 ,
, 𝑇 , 𝜃 𝑃 , 𝜃 sin 𝜃 𝑑𝜃,                                                                         34b  

where sin 𝜃 is the latitudinal weight. The coefficients 𝑇 ,
,  and 𝑇 ,

,  can also be calculated with the least-squares method that 10 

minimizes the error 𝐸  (the squared L  norm of the residual): 

𝐸 ≡
1

4𝜋
𝑅 𝜆, 𝜃 sin 𝜃 𝑑𝜃𝑑𝜆,                                                                     35  

where the residual 𝑅 𝜆, 𝜃  is 

𝑅 𝜆, 𝜃 ≡ 𝑇 , , 𝜃 cos 𝑚𝜆 𝑇 , , 𝜃 sin 𝑚𝜆 𝑇 , 𝜃 cos 𝑚𝜆 𝑇 , 𝜃 sin 𝑚𝜆 .   36  

From Eqs. 35 , 36 , and A3 , we derive 15 

𝐸
1
2

𝑇 , , 𝜃 𝑇 , , 𝜃
1
2

𝑇 , , 𝜃 𝑇 , , 𝜃                                            

   
1
2

𝑇 , , 𝜃 𝑇 , , 𝜃 sin 𝜃 𝑑𝜃.               37  

From Eqs. 37 , 30 , 31 , and the equations 𝜕𝐸 𝜕⁄ 𝑇 ,
, 0 and 𝜕𝐸 𝜕⁄ 𝑇 ,

, 0 used in the least-squares method, 

we can derive the same equations as Eq. 34 . In Eq. 35  (and Eq. 34 ), the latitudinal weight sin 𝜃 appears, unlike in Eq. 

20  (and Eq. 27 ), which is another difference between the SH and the new DFS methods. In the DFS method, the constant 20 

latitudinal weight is used in Eq. 20 , although the latitudinal area weight described below in Appendix B is usually used as 

the latitudinal weight at the grid points. 

When calculating the coefficients 𝑇 ,  (and 𝑇 , ) in Eq. 8 , we can also consider the least-squares method, not using 𝐸 in 

Eq. 20  but using 𝐸  with latitudinal weight sin 𝜃 like Eq. 35 . However, minimizing 𝐸  derives the simultaneous equations 

for calculating 𝑇 ,  with dense matrices, which leads to O 𝑁  operations. When using 𝐸, the simultaneous equations with 25 

penta-diagonal matrices require only O 𝑁  operations. Therefore, we choose to use 𝐸 instead of 𝐸′. 
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2.6 Application of the new basis functions to a wind vector 

The velocity potential 𝜒 and the stream function 𝜓 can be converted into the wind vector components 𝑢 and 𝑣 using the 

equations 

𝑢
1

𝑎 cos 𝜙
𝜕𝜒
𝜕𝜆

1
𝑎

𝜕𝜓
𝜕𝜙

1
𝑎 sin 𝜃

𝜕𝜒
𝜕𝜆

1
𝑎

𝜕𝜓
𝜕𝜃

,                                                        38a  

𝑣
1

𝑎 cos 𝜙
𝜕𝜓
𝜕𝜆

1
𝑎

𝜕𝜒
𝜕𝜙

1
𝑎 sin 𝜃

𝜕𝜓
𝜕𝜆

1
𝑎

𝜕𝜒
𝜕𝜃

,                                                       38b  5 

where 𝑢 𝑎 cos 𝜙 𝑑𝜆 𝑑𝑡⁄  is the zonal wind, and 𝑣 𝑎𝑑𝜙 𝑑𝑡⁄  is the meridional wind. The scalar variables 𝜒  and 𝜓  are 

expanded like Eqs. 7  and 8  as 

𝜒 𝜆, 𝜃 ≅ 𝜒 𝜃 cos 𝑚𝜆 𝜒 𝜃 sin 𝑚𝜆,                                                                    39  

𝜓 𝜆, 𝜃 ≅ 𝜓 𝜃 cos 𝑚𝜆 𝜓 𝜃 sin 𝑚𝜆,                                                                   40  

𝜒 𝜃 ≅ 𝜒 , 𝜃 ≡

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝜒 , cos 𝑛𝜃                   for 𝑚 0,             

𝜒 , sin 𝜃 cos 𝑛𝜃       for 𝑚 1,             

𝜒 , sin 𝜃 sin 𝑛𝜃       for even 𝑚 2,   

𝜒 , sin 𝜃 sin 𝑛𝜃      for odd 𝑚 3,    

                                        41  10 

𝜓 𝜃 ≅ 𝜓 , 𝜃 ≡

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝜓 , cos 𝑛𝜃                   for 𝑚 0,                   

𝜓 , sin 𝜃 cos 𝑛𝜃        for 𝑚 1,                   

𝜓 , sin 𝜃 sin 𝑛𝜃        for even 𝑚 2,         

𝜓 , sin 𝜃 sin 𝑛𝜃       for odd 𝑚 3,         

                                 42  

The equations for 𝜒 𝜃  and 𝜓 𝜃  for 𝑚 1 are the same as Eqs. 41  and 42 , respectively, except that the subscript c 

is replaced with s. Here, the truncated variables 𝜓 , 𝜆, 𝜃  and 𝜒 , 𝜆, 𝜃  are defined as 

https://doi.org/10.5194/gmd-2021-168
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



14 
 

𝜓 , 𝜆, 𝜃 ≡ 𝜓 , 𝜃 cos 𝑚𝜆 𝜓 , 𝜃 sin 𝑚𝜆,                                                43  

𝜒 , 𝜆, 𝜃 ≡ 𝜒 , 𝜃 cos 𝑚𝜆 𝜒 , 𝜃 sin 𝑚𝜆.                                                 44  

The wind vector components 𝑢 , 𝜆, 𝜃  and 𝑣 , 𝜆, 𝜃  are obtained from 𝜓 , 𝜆, 𝜃  and 𝜒 , 𝜆, 𝜃  using Eq. 38  as 

𝑢 , 𝜆, 𝜃 ≡
1

𝑎 sin 𝜃
𝜕𝜒 , 𝜆, 𝜃

𝜕𝜆
1
𝑎

𝜕𝜓 , 𝜆, 𝜃
𝜕𝜃

𝑢 , 𝜃 cos 𝑚𝜆 𝑢 , 𝜃 sin 𝑚𝜆,       45a  

𝑢 , 𝜃 ≡
𝑚𝜒 , 𝜃

𝑎 sin 𝜃
1
𝑎

𝜕𝜓 , 𝜃
𝜕𝜃

,                                                               45b  5 

𝑢 , 𝜃 ≡
𝑚𝜒 , 𝜃

𝑎 sin 𝜃
1
𝑎

𝜕𝜓 , 𝜃
𝜕𝜃

,                                                           45c  

𝑣 , 𝜆, 𝜃 ≡
1

𝑎 sin 𝜃
𝜕𝜓 , 𝜆, 𝜃

𝜕𝜆
1
𝑎

𝜕𝜒 , 𝜆, 𝜃
𝜕𝜃

𝑣 , 𝜃 cos 𝑚𝜆 𝑣 , 𝜃 sin 𝑚𝜆,       46a  

𝑣 , 𝜃 ≡
𝑚𝜓 , 𝜃

𝑎 sin 𝜃
1
𝑎

𝜕𝜒 , 𝜃
𝜕𝜃

,                                                               46b  

𝑣 , 𝜃 ≡
𝑚𝜓 , 𝜃

𝑎 sin 𝜃
1
𝑎

𝜕𝜒 , 𝜃
𝜕𝜃

.                                                           46c  

From Eqs. 45b, c , 46b, c , 41 , and 42 , we obtain 10 

𝑢 , 𝜃

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑢 , sin 𝑛𝜃                                                             for 𝑚 0,

𝑢 , cos 𝑛𝜃                                                            for 𝑚 1,

𝑢 , sin 𝑛𝜃                                                   for even 𝑚 2,

𝑢 , cos 𝑛𝜃 𝑢 , sin 𝜃 sin 𝑛𝜃  for odd 𝑚 3,

                                  47  
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𝑣 , 𝜃

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑣 , sin 𝑛𝜃                                                             for 𝑚 0,

𝑣 , cos 𝑛𝜃                                                            for 𝑚 1,

𝑣 , sin 𝑛𝜃                                                   for even 𝑚 2,

𝑣 , cos 𝑛𝜃 𝑣 , sin 𝜃 sin 𝑛𝜃  for odd 𝑚 3,

                                  48  

where  

𝑢 ,
𝑛
𝑎

𝜓 ,                                                                    for 𝑚 0,                                  49a  

𝑢 ,
1
𝑎

𝑚𝜒 ,
𝑛 𝜓 , 𝜓 ,

2
                   for 𝑚 1,                                  49b  

except for 𝑢 ,
1
𝑎

𝑚𝜒 ,
2𝜓 , 𝜓 ,

2
,                                                       5 

𝑢 ,
1
𝑎

𝑚𝜒 ,
𝑛 𝜓 , 𝜓 ,

2
                for even 𝑚 2,                             49c  

𝑢 ,
1
𝑎

𝑚 𝜒 , 𝜒 ,

2
𝑛 𝜓 , 2𝜓 , 𝜓 ,

4
   for odd 𝑚 3              49d  

except for 𝑢 ,
1
𝑎

𝑚𝜒 ,

2
3𝜓 , 𝜓 ,

4
 ,                                                  

The equations for 𝑢 , 𝜃  and 𝑣 , 𝜃  for 𝑚 1 are the same as Eqs. 47  and 48 , respectively, except that the subscript 

c is replaced with s. The equations for 𝑢 ,  are the same as Eqs. 49b, c, d , except that 𝑢 , , 𝜒 , , and 𝜓 ,  are replaced 10 

with 𝑢 , , 𝜒 , , and 𝜓 , , respectively. The equations for 𝑣 ,  are the same as Eqs. 49a, b, c, d , except that 𝑢 , , 𝜒 , , 

and 𝜓 ,  are replaced with 𝑣 , , 𝜓 , , and 𝜒 , , respectively. The equations for 𝑣 ,  are the same as Eqs. 49b, c, d , 

except that 𝑢 , , 𝜒 , , and 𝜓 ,  are replaced with 𝑣 , , 𝜓 , , and 𝜒 , , respectively. 

From Eqs. 47  to 49 , it can be seen that 𝑢 , 𝜃 , 𝑢 , 𝜃 , 𝑣 , 𝜃 , and 𝑣 , 𝜃  at the poles are finite for 𝑚 1 and zero 

for 𝑚 1. Moreover, the following relations are satisfied for 𝑚 1: 15 

𝑢 , 𝜃 𝑣 , 𝜃
1
𝑎

𝜒 , 𝜓 ,      at 𝜃 0 North Pole ,                     50a  

𝑢 , 𝜃 𝑣 , 𝜃
1
𝑎

𝜒 , 𝜓 ,      at 𝜃 0 North Pole ,                     50b  
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𝑢 , 𝜃 𝑣 , 𝜃
1
𝑎

1 𝜒 , 𝜓 ,  at 𝜃 𝜋 South Pole ,                 50c  

𝑢 , 𝜃 𝑣 , 𝜃
1
𝑎

1 𝜒 , 𝜓 ,  at 𝜃 𝜋 South Pole .          50d  

Thus, it is guaranteed that the wind vector 𝑢 , , 𝑣 ,  in Eqs. 45  and 46  is continuous at the poles. 

2.7 New method to calculate expansion coefficients for a wind vector 

We propose a new method that calculates the expansion coefficients 𝜒 , , 𝜒 , , 𝜓 ,  and 𝜓 ,  using the least-squares 5 

method to minimize the error of 𝑢 , 𝜆, 𝜃  and 𝑣 , 𝜆, 𝜃  with respect to 𝑢 𝜆, 𝜃  and 𝑣 𝜆, 𝜃  due to the meridional 

wavenumber truncation. First, the wind vector components 𝑢 and 𝑣 are expanded as 

𝑢 𝜆, 𝜃 ≅ 𝑢 𝜃 cos 𝑚𝜆 𝑢 𝜃 sin 𝑚𝜆,                                                                 51  

𝑣 𝜆, 𝜃 ≅ 𝑣 𝜃 cos 𝑚𝜆 𝑣 𝜃 sin 𝑚𝜆,                                                                 52  

𝑢 𝜃 ≅ 𝑢 , 𝜃 ≡

⎩
⎪
⎨

⎪
⎧

𝑢 , sin 𝑛𝜃                 for even 𝑚,

𝑢 , cos 𝑛𝜃                for odd 𝑚,

                                          53  10 

𝑣 𝜃 ≅ 𝑣 , 𝜃 ≡

⎩
⎪
⎨

⎪
⎧

𝑣 , sin 𝑛𝜃 ,                 for even 𝑚,

𝑣 , cos 𝑛𝜃 ,                for odd 𝑚.

                                          54  

The equations for 𝑢 𝜃  and 𝑣 𝜃  for 𝑚 1 are the same as Eqs. 53  and 54 , respectively, except that the subscript c 

is replaced with s. Here the expansion coefficients 𝑢 , , 𝑢 , , 𝑣 , , and 𝑣 ,  are calculated by the forward discrete cosine or 

sine transform from the grid-point values of 𝑢 𝜃 , 𝑢 𝜃 , 𝑣 𝜃 , and 𝑣 𝜃  See Sect. 2.10 . The truncated variables 

𝑢 , 𝜆, 𝜃  and 𝑣 , 𝜆, 𝜃  are defined as 15 

𝑢 , 𝜆, 𝜃 ≡ 𝑢 , 𝜃 cos 𝑚𝜆 𝑢 , 𝜃 sin 𝑚𝜆,                                               55  

𝑣 , 𝜆, 𝜃 ≡ 𝑣 , 𝜃 cos 𝑚𝜆 𝑣 , 𝜃 sin 𝑚𝜆.                                               56  
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Next, 𝜒 , , 𝜒 , , 𝜓 , , and 𝜓 ,  are calculated to minimize the following error 𝐹 (the squared L  norm of the residual 

vector): 

𝐹 ≡
1

2𝜋
𝑅 , 𝜆, 𝜃 𝑅 , 𝜆, 𝜃 𝑑𝜃 𝑑𝜆,                                                   57  

where the residual vector 𝑅 , 𝜆, 𝜃 , 𝑅 , 𝜆, 𝜃  is defined as 

𝑅 , 𝜆, 𝜃 ≡ 𝑢 , 𝜆, 𝜃 𝑢 , 𝜆, 𝜃 ,                                                58a  5 

𝑅 , 𝜆, 𝜃 ≡ 𝑣 , 𝜆, 𝜃 𝑣 , 𝜆, 𝜃 .                                               58b  

From Eqs. 55  to 58  and Eqs. 45a , 46a , and A3 , we derive 

𝐹
1
𝜋

𝑢 , 𝜃 𝑢 , 𝜃
1
2

𝑢 , 𝜃 𝑢 , 𝜃
1
2

𝑢 , 𝜃 𝑢 , 𝜃              

                                    

𝑣 , 𝜃 𝑣 , 𝜃
1
2

𝑣 , 𝜃 𝑣 , 𝜃
1
2

𝑣 , 𝜃 𝑣 , 𝜃 𝑑𝜃,    59  10 

Equations 47 , 48 , 49 , 53 , and 54  are substituted into Eq. 59 . The equations 𝜕𝐹 𝜕𝜒 ,⁄ 0, 𝜕𝐹 𝜕𝜒 ,⁄ 0, 

𝜕𝐹 𝜕𝜓 ,⁄ 0, and 𝜕𝐹 𝜕𝜓 ,⁄ 0 are used to calculate 𝜒 , , 𝜒 , , 𝜓 , , and 𝜓 , , so that 𝐹 is minimized. 

From 𝜕𝐹 𝜕𝜒 ,⁄ 0 and Eq. A4 , we derive 

𝜕
𝜕𝜒 ,

𝑣 , 𝑣 , 0                                                 for 𝑚 0,                              60a  

𝜕
𝜕𝜒 ,

𝑢 , 𝑢 , 𝑣 , 𝑣 , 0         for even 𝑚 2,                   60b  15 

𝜕
𝜕𝜒 ,

2 𝑢 , 𝑢 , 𝑢 , 𝑢 , 2 𝑣 , 𝑣 , 𝑣 , 𝑣 , 0     for odd 𝑚.     60c  

From Eq. 60 , and from the same equations as Eqs. 49b, c, d , except that 𝑢 , , 𝜒 , , and 𝜓 ,  are replaced with 𝑢 , , 

𝜒 , , and 𝜓 , , respectively, and the same equations as Eqs. 49a, b, c, d , except that 𝑢 , , 𝜒 , , and 𝜓 ,  are replaced 

with 𝑣 , , 𝜓 , , and 𝜒 , , respectively, we derive the following equations for 𝜒 ,  and 𝜓 , . 

For 𝑚 0, 20 

1
𝑎

𝑛𝜒 , 𝑣 ,             1 𝑛 𝑁 .                                                                               61a  

The coefficient 𝜒 ,  is determined so that the global means of 𝜒 are zero. See Appendix B for the calculation of the global 

mean. 

For 𝑚 1, 
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1
𝑎

𝑛 1 𝜒 , 2𝑚𝜓 , 4𝑚 2𝑛 2 𝜒 , 2𝑚𝜓 , 𝑛 1 𝜒 ,                            

2 𝑛 1 𝑣 , 4𝑚𝑢 , 2 𝑛 1 𝑣 ,    0 𝑛 𝑁 1 ,                61b  

with the exception of the following underlined values: 

1
𝑎

8𝑚 4 𝜒 , 4𝑚𝜓 , 2𝜒 ,   8𝑚𝑢 , 4𝑣 ,        𝑛 0 ,                    

1
𝑎

4𝑚𝜓 , 4𝑚 4 𝜒 , ⋯ ⋯                    𝑛 1 ,                    5 

1
𝑎

2𝜒 , 2𝑚𝜓 , ⋯ ⋯                    𝑛 2 ,                    

For even 𝑚 2, 

1
𝑎

𝑛 1 𝜒 , 2𝑚𝜓 , 4𝑚 2𝑛 2 𝜒 , 2𝑚𝜓 , 𝑛 1 𝜒 ,                          

2 𝑛 1 𝑣 , 4𝑚𝑢 , 2 𝑛 1 𝑣 ,          1 𝑛 𝑁 1 ,         61c  

with no exception. 10 

For odd 𝑚 3, 

1
𝑎

𝑛 2 𝜒 , 2𝑚𝜓 , 4𝑚 4𝑛 8𝑛 8 𝜒 , 2𝑚𝜓 , 8𝑚 6𝑛 8 𝜒 ,                    

2𝑚𝜓 , 4𝑚 4𝑛 8𝑛 8 𝜒 , 2𝑚𝜓 , 𝑛 2 𝜒 ,                    

4 𝑛 2 𝑣 , 8𝑚𝑢 , 8𝑛𝑣 , 8𝑚𝑢 , 4 𝑛 2 𝑣 ,     1 𝑛 𝑁 2 ,      61d  

with the exception of the following underlined values: 15 

1
𝑎

12𝑚 18 𝜒 , 4𝑚𝜓 , 4𝑚 21 𝜒 , ⋯ 16𝑚𝑢 , 12𝑣 , ⋯      𝑛 1 ,          

1
𝑎

4𝑚𝜓 , 8𝑚 32 𝜒 , ⋯ ⋯                                                   𝑛 2 ,         

1
𝑎

4𝑚 21 𝜒 , 2𝑚𝜓 , ⋯ ⋯                                                 𝑛 3 .         

Similarly, from 𝜕𝐹 𝜕𝜒 ,⁄ 0, we derive the same equations as Eqs. 61b, c, d , except that 𝜒 , 𝜓 , 𝑣 , and 𝑢  are replaced 

with 𝜒 , 𝜓 , 𝑣 , and 𝑢 , respectively. From 𝜕𝐹 𝜕𝜓 ,⁄ 0, we derive the same equations as Eqs. 61a, b, c, d , except 20 

that 𝜒 , 𝜓 , 𝑣 , and 𝑢  are replaced with 𝜓 , 𝜒 , 𝑢 , and 𝑣 , respectively. From 𝜕𝐹 𝜕𝜓 ,⁄ 0, we derive the same 

equations as Eqs. 61b, c, d , except that 𝜒 , 𝜓 , 𝑣 , and 𝑢  are replaced with 𝜓 , 𝜒 , 𝑢 , and 𝑣 , respectively. 

From Eqs. 61b, c, d , and from the same equations as Eqs. 61b, c, d , except that 𝜒 , 𝜓 , 𝑣 , and 𝑢  are replaced with 𝜓 , 

𝜒 , 𝑢 , and 𝑣 , respectively, we derive the following two linear simultaneous equations with nine-diagonal matrices for 

each odd 𝑚 3: 25 
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𝐃𝟏

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜒 ,

𝜓 ,

𝜒 ,

𝜓 ,

𝜒 ,

𝜓 ,
:
: ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
∗
∗
∗
∗
∗
∗
:
∗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,      𝐃𝟐

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜓 ,

𝜒 ,

𝜓 ,

𝜒 ,

𝜓 ,

𝜒 ,
:
: ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
∗
∗
∗
∗
∗
∗
:
∗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,                                                                     62  

where 𝐃𝟏 and 𝐃𝟐 are nine-diagonal matrices. We also derive two similar linear simultaneous equations with penta-diagonal 

matrices for 𝑚 1 and each even 𝑚 2. The simultaneous equations with nine-diagonal or penta-diagonal matrices can be 

solved in a similar way to Eq. 25 , and the expansion coefficients 𝜒 ,  and 𝜓 ,  in Eq. 62  can be solved efficiently. From 

the same equations as Eqs. 61b, c, d , except that 𝜒 , 𝜓 , 𝑣 , and 𝑢  are replaced with 𝜒 , 𝜓 , 𝑣 , and 𝑢 , respectively, 5 

and the same equations as Eqs. 61b, c, d , except that 𝜒 , 𝜓 , 𝑣 , and 𝑢  are replaced with 𝜓 , 𝜒 , 𝑢 , and 𝑣 , respectively, 

two similar linear simultaneous equations with nine-diagonal matrices for each 𝑚 3 and two linear simultaneous equations 

with penta-diagonal matrices for 𝑚 1 and each even 𝑚 2 are also derived. Thus, the expansion coefficients 𝜒 , , 𝜒 , , 

𝜓 , , and 𝜓 ,  are obtained from 𝑢 , , 𝑢 , , 𝑣 , , and 𝑣 ,  using Eqs. 61a, b, c, d  and the similar equations. 

The expansion coefficients 𝑢 , , 𝑢 , , 𝑣 , , and 𝑣 ,  are obtained from 𝜒 , , 𝜒 , , 𝜓 , , and 𝜓 ,  using Eq. 49  for 10 

𝑢 ,  and the similar equations for 𝑢 , , 𝑣 , , and 𝑣 , . 

2.8 Relation between the least-squares method and the Galerkin method for the wind vector 

Here we discuss the relation between the least-squares method described above and the Galerkin method when calculating 

the expansion coefficients related to the wind vector.  

From Eqs. 57 , 58 , and the equations 𝜕𝐹 𝜕𝜒 ,⁄ 0, 𝜕𝐹 𝜕𝜒 ,⁄ 0, 𝜕𝐹 𝜕𝜓 ,⁄ 0, and 𝜕𝐹 𝜕𝜓 ,⁄ 0 used in the 15 

least-squares method, we obtain 

1
2𝜋

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜒 ,

𝑅 , 𝜆, 𝜃
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜒 ,
𝑅 , 𝜆, 𝜃 𝑑𝜃 𝑑𝜆 0,                                  63a  

1
2𝜋

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜒 ,

𝑅 , 𝜆, 𝜃
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜒 ,
𝑅 , 𝜆, 𝜃 𝑑𝜃 𝑑𝜆 0,                                  63b  

1
2𝜋

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜓 ,

𝑅 , 𝜆, 𝜃
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜓 ,
𝑅 , 𝜆, 𝜃 𝑑𝜃 𝑑𝜆 0,                                  63c  

1
2𝜋

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜓 ,

𝑅 , 𝜆, 𝜃
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜓 ,
𝑅 , 𝜆, 𝜃 𝑑𝜃 𝑑𝜆 0.                                  63d  20 

From Eqs. 45 , 46 , and 28  we derive 

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜒 ,

,
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜒 ,
＝

∂
𝜕𝜒 ,

𝑚𝜒 , 𝜃
𝑎 sin 𝜃

sin 𝑚𝜆 ,
∂

𝜕𝜒 ,

1
𝑎

𝜕𝜒 , 𝜃
𝜕𝜃

cos 𝑚𝜆                    
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＝
𝑚𝑆 , 𝜃

𝑎 sin 𝜃
sin 𝑚𝜆 ,

1
𝑎

𝜕𝑆 , 𝜃
𝜕𝜃

cos 𝑚𝜆 ,                                        64a  

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜒 ,

,
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜒 ,

𝑚𝑆 , 𝜃
𝑎 sin 𝜃

cos 𝑚𝜆 ,
1
𝑎

𝜕𝑆 , 𝜃
𝜕𝜃

sin 𝑚𝜆 ,                                            64b  

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜓 ,

,
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜓 ,

1
𝑎

𝜕𝑆 , 𝜃
𝜕𝜃

cos 𝑚𝜆 ,
𝑚𝑆 , 𝜃

𝑎 sin 𝜃
sin 𝑚𝜆 ,                                            64c  

𝜕𝑢 , 𝜆, 𝜃
𝜕𝜓 ,

,
𝜕𝑣 , 𝜆, 𝜃

𝜕𝜓 ,

1
𝑎

𝜕𝑆 , 𝜃
𝜕𝜃

sin 𝑚𝜆 ,
𝑚𝑆 , 𝜃

𝑎 sin 𝜃
cos 𝑚𝜆 .                                                64d  

The right-hand sides of Eqs. 64a, b, c, d  are considered as the new DFS vector basis functions. Equation 63  shows that the 5 

residual vector 𝑅 , 𝜆, 𝜃 , 𝑅 , 𝜆, 𝜃  is orthogonal to each of the vector basis functions in Eq. 64 , which means that Eq. 

63  is the same as the equation obtained by the Galerkin method. 

This method to calculate the DFS expansion coefficients of 𝜒 and 𝜓 from 𝑢 and 𝑣 using the least-squares method (or the 

Galerkin method with the DFS vector basis functions) is similar to the vector harmonic transform method (Browning et al., 

1989; Temperton, 1991; Swarztrauber, 1993), where the SH expansion coefficients of the divergence 𝐷 ∇ 𝜒  and the 10 

vorticity 𝜁 ∇ 𝜓 are calculated from the grid-point values of 𝑢 and 𝑣 using the Galerkin spectral method with the orthogonal 

vector SH basis functions. 

2.9 Arrangement of equally spaced latitudinal grid points 

In DFS models, equally spaced latitudinal grid points are used. We use the following three ways of arranging equally spaced 

latitudinal grid points: 15 

Grid 0 ∶    𝐽 𝐽 ,           𝜃 𝜋 𝑗 0.5 𝐽⁄ ,    𝑗 0, … , 𝐽 1,                                65a  

Grid 1 ∶    𝐽 𝐽 1,    𝜃 𝜋𝑗 𝐽⁄ ,                 𝑗 0, . . . , 𝐽 ,                                        65b  

Grid 1 ∶   𝐽 𝐽 1,   𝜃 𝜋𝑗 𝐽⁄ ,                𝑗 1, … , 𝐽 1,                                 65c  

where 𝜃  is the latitude at each grid point, and 𝐽  is the number of latitudinal grid points in Grid [0]. When the grid intervals 

in Grids [0], [1], and [−1] are set equal, the number of grid points 𝐽 in Grid [1] is 𝐽 1 and the number of grid points 𝐽 in 20 

Grid [−1] is 𝐽 1. Figure 1 shows Grids [0], [1], and [−1] when 𝐽 4 and the grid interval ∆𝜃 𝜋 4⁄ . Grid [0] has been 

widely used in DFS models, for example, in Merilees (1973b), Orszag (1974), Cheong (2000a, 2000b), and Yoshimura and 

Matsumura (2005). Grid [1] was used, for example, in the DFS expansion in Yee (1981). Grid [−1] was used, for example, in 

the SH model using Clenshaw–Curtis quadrature in Hotta and Ujiie (2018). All of Grids [0], [1], and [−1] were used in the SH 

expansion in Swarztrauber and Spotz (2000). We have confirmed that stable integration is possible in the model using the new 25 

DFS method with any of Grids [0], [1], and [−1], as shown in Sect. 5 below. 
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2.10 Discrete Fourier cosine and sine transforms in latitude 

Forward discrete Fourier cosine and sine transforms are performed in Eqs. 19 , 53 , and 54 , and inverse discrete 

Fourier cosine and sine transforms are performed in  Eqs. 9 , 47 , and 48 , in the latitudinal direction. The calculation of 

the discrete cosine and sine transforms in Grids [0], [1], and [−1] is shown below. Here, 𝑔 𝜃  and ℎ 𝜃  are grid-point values, 

and 𝑔  and ℎ  are expansion coefficients. 5 

When using Grid [0], forward and inverse discrete cosine transforms are performed as  

𝑔
𝑏
𝐽

𝑔 𝜃 cos 𝑛𝜃 ,    𝑏 ≡
 1  𝑓𝑜𝑟 𝑛 0
 2  𝑓𝑜𝑟 𝑛 0,                                            66a  

𝑔 𝜃 𝑔 cos 𝑛𝜃 .                                                                                         66b  

When using Grid [0], forward and inverse discrete sine transforms are performed as 

ℎ
𝑏
𝐽

ℎ 𝜃 sin 𝑛𝜃 , 𝑏 ≡
 1  𝑓𝑜𝑟 𝑛 𝐽
 2  𝑓𝑜𝑟 𝑛 𝐽 ,

                                       67a  10 

ℎ 𝜃 ℎ sin 𝑛𝜃 .                                                                                           67b  

When using Grid [1], forward and inverse discrete cosine transforms are performed as 

𝑔
𝑏
𝐽

𝑐 𝑔 𝜃 cos 𝑛𝜃 ,                                                                                                    

𝑏 ≡
 1  𝑓𝑜𝑟 𝑛 0, 𝐽     
 2  𝑓𝑜𝑟 0 𝑛 𝐽

,      𝑐 ≡
1 2⁄     𝑓𝑜𝑟 𝑗 0, 𝐽

 1      𝑓𝑜𝑟 0 𝑗 𝐽 ,
                            68a  

𝑔 𝜃 𝑔 cos 𝑛𝜃 .                                                                                              68b  15 

When using Grid [1], forward and inverse discrete sine transforms are performed as 

ℎ
2
𝐽

ℎ 𝜃 sin 𝑛𝜃 ,                                                                                        69a  

ℎ 𝜃 ℎ sin 𝑛𝜃 ,   ℎ 𝜃 ℎ 𝜃 0.                                                       69b  

Grid [−1] is the same as Grid [1], except that there are no grid points at the North and South poles. The zonal wavenumber 

components of scalar variables at the poles are zero except for 𝑚 0 (See Eq. 8 ), and those of vector variables at the poles 20 
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are zero except for 𝑚 1 (See Eqs. 47  and 48 ). When we use Grid [−1] and the values at the poles are known to be zero, 

forward and inverse discrete cosine transforms can be performed using Eq. 68  and forward and inverse discrete sine 

transforms can be performed using Eq. 69  in the same way as for Grid [1]. When we use Grid [−1] and the values at the 

poles are unknown (i.e., the zonal wavenumber components of scalar variables for 𝑚 0, and those of vector variables for 

𝑚 1), the inverse discrete cosine transform can be performed using Eq. 68b , but the forward discrete cosine transform 5 

cannot be performed using Eq. 68a . We can calculate the expansion coefficients 𝑔  from 𝑔 𝜃  in the following way. Eq. 

68b  is multiplied by sin 𝜃 , and we define 𝑔 𝜃  as 

𝑔 𝜃 ≡ 𝑔 𝜃 sin 𝜃 𝑔 sin 𝜃 cos 𝑛𝜃 .                                                          70  

Since the values 𝑔 𝜃  at the poles 𝑗 0, 𝐽  are zero, we can expand 𝑔 𝜃  as 

𝑔 𝜃 𝑔 sin 𝑛𝜃 .                                                                              71  10 

The expansion coefficients 𝑔  can be obtained from 𝑔 𝜃  in the same way as in Eq. 69a  by forward discrete sine transform: 

𝑔
2
𝐽

𝑔 𝜃 sin 𝑛𝜃 .                                                                       72  

From Eqs. 70  and 71 , we obtain 

𝑔 sin 𝜃 cos 𝑛𝜃 𝑔 sin 𝑛𝜃,                                                         73a  

𝑔 𝑔 0,                                                                                                 73b  15 

By using Eq. A2a , we obtain 

𝑔 sin 𝜃 cos 𝑛𝜃 𝑔
𝑔
2

sin 𝜃
𝑔

2
𝑔

2
sin 𝑛𝜃

𝑔

2
sin 𝐽 2 𝜃

𝑔

2
sin 𝐽 1 𝜃 . 74  

By substituting Eq. 74  into Eq. 73a  and comparing the left and right sides of the equation, we obtain 

𝑔

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑔

𝑔
2

         for 𝑛 1,            
𝑔

2
𝑔

2
   for 𝑛 2, … , 𝐽 3,

𝑔

2
          for 𝑛 𝐽 2,

𝑔

2
          for 𝑛 𝐽 2.

                                                                 75  

We can calculate 𝑔 𝜃  from 𝑔 𝜃  using Eq. 70 , calculate 𝑔  from 𝑔 𝜃  using Eq. 72 , and calculate 𝑔  from 𝑔  using 20 

Eq. 75 . 
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2.11 Zonal Fourier filter 

In regular longitude–latitude grids, the longitudinal grid spacing becomes narrow at high latitudes. In DFS methods, the 

zonal Fourier filter (Merilees 1974; Boer and Steinberg 1975; Cheong 2000a), which filters out the high zonal wavenumber 

components at high latitudes, is usually used to obtain a more uniform resolution. In this study, we set the largest zonal 

wavenumber 𝑀  at each latitude as 5 

𝑀 𝜃 min 𝑀, 𝑀 𝑀 sin 𝜃 ,                                                                 76  

where we use the value 𝑀 20 to make the resolution similar to that in the reduced grid of Miyamoto (2006). The values of 

𝑇 𝜃  and 𝑇 𝜃  in Eq. 7  are set to zero for 𝑚 𝑀 𝜃  during the spectral transform. The use of a reduced grid (Hortal 

and Simmons, 1991; Juang, 2004; Miyamoto, 2006) has a similar effect to the zonal Fourier filter. 

2.12 Laplacian operator and Poisson equation 10 

The calculation of the Laplacian operator and the Poisson equation in the new DFS method is described in this section. In 

the equation 

𝑔 𝜆, 𝜃 ∇ 𝑓 𝜆, 𝜃
1

𝑎
1

sin 𝜃
𝜕 𝑓
𝜕𝜆

1
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃
𝜕𝑓
𝜕𝜃

,                                               77  

where ∇  is the Laplacian operator, the variables 𝑓 and 𝑔 are expanded zonally using Eq. 7  as 

𝑓 𝜆, 𝜃 ≅ 𝑓 𝜃 cos 𝑚𝜆 𝑓 𝜃 sin 𝑚𝜆,                                                          78  15 

𝑔 𝜆, 𝜃 ≅ 𝑔 𝜃 cos 𝑚𝜆 𝑔 𝜃 sin 𝑚𝜆.                                                         79  

The variables 𝑓 𝜃 , 𝑓 𝜃 , 𝑔 𝜃 , and 𝑔 𝜃  are expanded meridionally using Eq. 8  as 

𝑓 𝜃 ≅ 𝑓 , 𝜃 ≡

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑓 , cos 𝑛𝜃 ,                  for 𝑚 0,             

𝑓 , sin 𝜃 cos 𝑛𝜃 ,       for 𝑚 1,             

𝑓 , sin 𝜃 sin 𝑛𝜃 ,       for even 𝑚 2,   

𝑓 , sin 𝜃 sin 𝑛𝜃 ,      for odd 𝑚 3,   

                                         80  
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𝑔 𝜃 ≅ 𝑔 , 𝜃 ≡

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑔 , cos 𝑛𝜃 ,                  for 𝑚 0,             

𝑔 , sin 𝜃 cos 𝑛𝜃 ,       for 𝑚 1,              

𝑔 , sin 𝜃 sin 𝑛𝜃 ,       for even 𝑚 2,    

𝑔 , sin 𝜃 sin 𝑛𝜃 ,      for odd 𝑚 3.   

                                        81  

The equations for 𝑓 𝜃  and 𝑔 𝜃  for 𝑚 1 are the same as Eqs. 80  and 81 , respectively, except that the subscript c is 

replaced with s. We define the truncated variables 𝑓 , 𝜃  and 𝑔 , 𝜃  as 

𝑓 , 𝜆, 𝜃 ≡ 𝑓 , 𝜃 cos 𝑚𝜆 𝑓 , 𝜃 sin 𝑚𝜆,                                             82a  

𝑔 , 𝜆, 𝜃 ≡ 𝑔 , 𝜃 cos 𝑚𝜆 𝑔 , 𝜃 sin 𝑚𝜆.                                             82b  5 

From Eq. 82a , we obtain 

∇ 𝑓 , 𝜆, 𝜃
1

𝑎
𝑚

sin 𝜃
𝑓 , 𝜃

1
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃
𝜕𝑓 , 𝜃

𝜕𝜃
cos 𝑚𝜆                                        

1
𝑎

𝑚
sin 𝜃

𝑓 , 𝜃
1

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃

𝜕𝑓 , 𝜃
𝜕𝜃

sin 𝑚𝜆.                           83  

Here we use the Galerkin method to calculate the Laplacian operator and the Poisson equation, and obtain 

1
2𝜋

𝑆 , 𝜃 cos 𝑚𝜆 𝑅 𝜆, 𝜃 𝑑𝜃𝑑𝜆 0,                                                        84a  10 

1
2𝜋

𝑆 , 𝜃 sin 𝑚𝜆 𝑅 𝜆, 𝜃 𝑑𝜃𝑑𝜆 0,                                                       84b  

where the residual 

𝑅 𝜆, 𝜃 ≡ 𝑔 , 𝜆, 𝜃 ∇ 𝑓 , 𝜆, 𝜃                                                                  85  

is orthogonal to each of the new DFS basis functions 𝑆 , 𝜃 cos 𝑚𝜆 and 𝑆 , 𝜃 sin 𝑚𝜆 (see Sect. 2.4).  

We can also use the least-squares method described in Sect. 2.3 instead of the Galerkin method so that the following error 15 

𝐻 (the squared L  norm of the residual) is minimized: 

𝐻 ≡
1

2𝜋
𝑅 𝜆, 𝜃 𝑑𝜃 𝑑𝜆.                                                                        86  
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When calculating 𝑔 by applying the Laplacian operator to a given 𝑓, 𝑔 ,  and 𝑔 ,  can be calculated from 𝜕𝐻 𝜕𝑔 ,⁄  and 

𝜕𝐻 𝜕𝑔 ,⁄  using the least-squares method. The equations 𝜕𝐻 𝜕𝑔 ,⁄  and 𝜕𝐻 𝜕𝑔 ,⁄  give the equivalent equations to Eq. 84 . 

When calculating 𝑓 from a given 𝑔 in the Poisson equation, 𝑓 ,  and 𝑓 ,  can be calculated from 𝜕𝐻 𝜕𝑓 ,⁄  and 𝜕𝐻 𝜕𝑓 ,⁄  

using the least-squares method. However, the equations derived from 𝜕𝐻 𝜕𝑓 ,⁄  and 𝜕𝐻 𝜕𝑓 ,⁄  are different from Eq. 84 . If 

we use different equations for calculating 𝑔 from 𝑓 and 𝑓 from 𝑔, the original values are changed when calculating 𝑔 from 𝑓 5 

followed by calculating 𝑓 from 𝑔, which is not good for numerical stability. Therefore, we use Eq. 84  for calculating both 

𝑔 from 𝑓 and 𝑓 from 𝑔. 

From Eqs. 82  to 85  and Eq. A3  we derive 

𝑆 , 𝜃 𝑔 , 𝜃
1

𝑎
𝑚

sin 𝜃
𝑓 , 𝜃

1
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃
𝜕𝑓 , 𝜃

𝜕𝜃
𝑑𝜃 0,                           87a  

𝑆 , 𝜃 𝑔 , 𝜃
1

𝑎
𝑚

sin 𝜃
𝑓 , 𝜃

1
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃
𝜕𝑓 , 𝜃

𝜕𝜃
𝑑𝜃 0.                           87b  10 

For 𝑚 0, we calculate 𝑔 ,  by using 

𝑔 , 𝜃
1

𝑎
𝑚

sin 𝜃
𝑓 , 𝜃

1
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃
𝜕𝑓 , 𝜃

𝜕𝜃
,                                                88  

instead of Eq. 87  following Yee (1981) and Cheong (2000a) for ease of calculation. For 0 𝑚 3, the exact solutions of 

𝑔 ,  can be obtained from Eq. 88  because the new DFS meridional basis functions for 0 𝑚 3  are the linear 

combination of the associated Legendre functions for 0 𝑚 3 and vice versa as described in Sect. 2.5. 15 

For 𝑚 0, by substituting Eqs. 80  and 81  into Eq. 88  multiplied by sin 𝜃 , transforming using Eq. A5 , and 

comparing both sides of the equation, we obtain 

𝑔 , 2𝑔 , 𝑔 ,
1

𝑎
𝑛 1 𝑛 2 𝑓 , 2𝑛 𝑓 , 𝑛 1 𝑛 2 𝑓 ,    0 𝑛 𝑁 ,    89a  

except for the following underlined values: 

1𝑔 , 𝑔 , ⋯                            𝑛 1 ,                                               20 

2𝑔 , 2𝑔 , 𝑔 , ⋯                        𝑛 2 .                                               

For 𝑚 1, by substituting Eqs. 80  and 81  into Eq. 87a  and using Eqs. A2 , A4  and A5 , we obtain  

𝑔 , 2𝑔 , 𝑔 ,
1

𝑎
𝑛 1 𝑛𝑓 , 2𝑛 4𝑚 𝑓 , 𝑛 1 𝑛𝑓 ,     0 𝑛 𝑁 1   89b  

except for the following underlined values: 

1𝑔 , 𝑔 , ⋯                                                                  𝑛 1 ,                                         25 

2𝑔 , 2𝑔 , 𝑔 ,
1

𝑎
4𝑓 , ⋯                            𝑛 2 .                                        

For even 𝑚 2, by substituting Eqs. 80  and 81  into Eq. 87a  and using Eqs. A4  

 and A5 , we obtain 
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𝑔 , 2𝑔 , 𝑔 ,
1

𝑎
𝑛 1 𝑛𝑓 , 2𝑛 4𝑚 𝑓 , 𝑛 1 𝑛𝑓 ,    1 𝑛 𝑁 1    89c  

except for the following underlined values: 

3𝑔 , 𝑔 , ⋯                                                                         𝑛 1                              

with no exceptions. 

For odd 𝑚 3, by substituting Eqs. 80  and 81  into Eq. 87a  and using Eqs. A2 , A4  and A5 , we obtain 5 

𝑔 , 4𝑔 , 6𝑔 , 4𝑔 , 𝑔 ,                                                                                            

1
𝑎

𝑛 2 𝑛 1 𝑓 , 4𝑛 6𝑛 4 4𝑚 𝑓 , 6𝑛 4 8𝑚 𝑓 ,                    

4𝑛 6𝑛 4 4𝑚 𝑓 , 𝑛 2 𝑛 1 𝑓 ,                     1 𝑛 𝑁      89d  

except for the following underlined values: 

10𝑔 , 5𝑔 , 𝑔 ,
1

𝑎
12 12𝑚 𝑓 , ⋯             𝑛 1 ,                           10 

5𝑔 , 4𝑔 , 𝑔 , ⋯                                                        𝑛 2 ,                           

5𝑔 , 6𝑔 , 4𝑔 , 𝑔 ,
1

𝑎
24 4𝑚 𝑓 , ⋯           𝑛 3 .                           

From Eq. 89 , we obtain the following two linear simultaneous equations with tri-diagonal or penta-diagonal matrices: 

𝐀 , _ 𝒈 , _ 𝐁 , _ 𝒇 , _ ,   𝐀 , _ 𝒈 , _ 𝐁 , _ 𝒇 , _ ,                       90  

where 𝒈 ,  and 𝒈 ,  are the vectors whose components are 𝑔 ,  (𝑛 is even) and 𝑔 ,  (𝑛 is odd), respectively, and 15 

𝒇 , _  and 𝒇 , _  are the vectors whose components are 𝑓 ,  (𝑛 is even) and 𝑓 ,  (𝑛 is odd), respectively; 𝐀 , _ , 

𝐁 , _ , 𝐀 , _ , and 𝐁 , _  are tri-diagonal or penta-diagonal matrices. 𝒈 , _  and 𝒈 , _  are calculated by 

𝒈 , 𝐀 , 𝐁 , 𝒇 , ,   𝒈 , 𝐀 , 𝐁 , 𝒇 , ,                                91  

which can be solved efficiently as in Eq. 25 . 

By using Eq. 87b  instead of Eq. 87a , we obtain the equations to calculate 𝑔 ,  from 𝑓 , , which are the same as Eqs. 20 

89  to 91 , except that the superscript c is replaced with the superscript s. 

We have verified that all the eigenvalues of the matrices 𝐀 , _ 𝐁 , _  and 𝐀 , _ 𝐁 , _  are negative real 

numbers for several truncation wavenumbers 𝑀  and 𝑁 , but we have not yet proved that this is true for all truncation 

wavenumbers.  

In the Poisson equation, 𝑓 is calculated from given 𝑔 in Eq. 77 . We calculate 𝑓 from 𝑔 by the reverse calculation of 𝑔 25 

from 𝑓 in Eq. 91 . That is, we calculate 𝑓 from 𝑔 by 

𝒇 , _ 𝐁 , _ 𝐀 , _ 𝒈 , _ , 𝒇 , _ 𝐁 , _ 𝐀 , _ 𝒇 , _ ,                           92  

except when 𝑚 0 and 𝑛 is even. For 𝑚 0, 𝑓 ,  disappears in Eq. 89a . The coefficients 𝑓 ,  (even 𝑛 2) are 

calculated from 𝑔 ,  (even 𝑛 2) by Eq. 89a . The value 𝑓 ,  is calculated from 𝑓 ,  (even 𝑛 2) so that the 
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global mean of 𝑓 is zero using Eq. B1 . 𝒇 , _  and 𝒇 , _  are also calculated from the equations where the superscripts 

c in Eq. 92  are replaced with the superscript s. 

2.13 The Helmholtz equation 

From Eq. 91 , Eq. 77  is represented as 

𝒈 𝐀 𝟏𝐁𝒇,                                                                                             93  5 

where the subscripts 𝑚, n_even and n_odd, and the superscripts c and s are omitted. The matrix 𝐀 𝟏𝐁 represents the Laplacian 

operator ∇  in spectral space. 

The Helmholtz equation is 

𝑓 𝜀∇ 𝑓 1 𝜀
1

𝑎
1

sin 𝜃
𝜕

𝜕𝜆
1

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃

𝜕
𝜕𝜃

𝑓 𝑔,                                       94  

where 𝑓 is calculated from given 𝑔. Equation 94  is represented as 10 

𝐈 𝜀𝐀 𝟏𝐁 𝒇 𝒈.                                                                                       95  

From Eq. 95 , 𝒇 is calculated from 𝒈 by 

𝒇 𝐀 𝜀𝐁 𝟏𝐀𝒈.                                                                                     96  

Since 𝐀 𝜀𝐁 is a penta-diagonal or tri-diagonal matrix, Eq. 96  can be efficiently solved as in Eq. 25 . Similarly, the 

Helmholtz-like equation 15 

𝑓 𝜀 ∇ 𝑓 ∇ 𝑔                                                                                       97  

is represented as 

𝐈 𝜀 𝐀 𝟏𝐁 𝒇 𝐀 𝟏𝐁𝒈.                                                                             98  

From Eq. 98 , 𝒇 is calculated from 𝒈 by 

𝒇 𝐀 𝜀 𝐁 𝟏𝐁𝒈.                                                                                  99  20 

2.14 Horizontal diffusion 

The horizontal diffusion is calculated in the same way as in Cheong et al. (2004). The equation for fourth-order 

hyperdiffusion is 

𝑓 𝜀∇ 𝑓 𝑔,                                                                                100  

where 𝑓 is calculated from 𝑔. Equation 100  can be converted into 25 

1 𝑖√𝜀∇ 1 𝑖√𝜀∇ 𝑓 𝑔,                                                              101  

where 𝑖 √ 1. Equation 101  is represented as 

𝐈 𝑖√𝜀𝐀 𝟏𝐁 𝐈 𝑖√𝜀𝐀 𝟏𝐁 𝒇 𝒈,                                                       102  

from which we obtain the equation to calculate 𝒇 from 𝒈 as 

𝒇 𝐀 𝑖√𝜀𝐁
𝟏

𝐀 𝐀 𝑖√𝜀𝐁
𝟏

𝐀𝒈.                                                        103  30 
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Here, 𝐀 𝑖√𝜀𝐁 and 𝐀 𝑖√𝜀𝐁 are complex matrices and 𝒇 and 𝒈 are real column vectors. For efficient computation, two real 

column vectors can be combined into one complex column vector (Cheong et al., 2004); for example, 𝒇 𝒇 𝑖𝒇  and 𝒈

𝒈 𝑖𝒈 , where the superscript c indicates the zonal cosine component, and the superscript s indicates the zonal sine 

component. 

3 The error due to meridional wavenumber truncation in DFS expansion methods 5 

Here we examine the error due to the meridional wavenumber truncation when the same continuity conditions at the poles 

as Eq. 3  are satisfied. In the DFS method of Orszag (1974), only 𝑓 ,  and 𝑓 ,  are modified to satisfy Eq. 4  equivalent 

to Eq. 3 . The DFS meridional basis functions of Cheong in Eq. 6  automatically satisfy the pole conditions in Eq. 3  for 

even 𝑚, but not for odd 𝑚. The new DFS meridional basis functions in Eq. 8  automatically satisfy the condition in Eq. 3  

for both even and odd 𝑚. We compare the error due to the wavenumber truncation among these DFS methods. 10 

Figure 2 shows the error due to the wavenumber truncation when we use Grid [0] (see Sect. 2.9) with the number of 

latitudinal grid points 𝐽 64. The original values of 𝐹 𝜃  are set to one at grid points north of 30°N, and zero at grid points 

south of 30°N. The original values are meridionally transformed from grid space to spectral space (forward transform), 

truncated with 𝑁 42, and then transformed back from spectral space to grid space (inverse transform) to obtain the truncated 

reconstruction of 𝐹 𝜃 .  15 

In the method of Orszag using Eq. 2 , a very large error occurs especially for odd |𝑚| 3  (Fig. 2) when 𝑓 ,  and 𝑓 ,  

are modified to satisfy the pole conditions in Eq. 4 . Dividing 𝐹 𝜃  by sin 𝜃 before the forward Fourier cosine transform 

for odd |𝑚| 3  also contributes to the large error. 

In the method of Cheong using Eq. 6 , large high wavenumber oscillations appear for even 𝑚 0  in Fig. 2. Although 

the basis functions in the method of Cheong for even 𝑚 0  are the same as those in the new method, the expansion 20 

coefficients are calculated differently in the two methods. In the method of Cheong, the simple meridional truncation with 

𝑁 𝐽 after the forward Fourier sine transform of a variable divided by sin 𝜃 causes the large high-wavenumber oscillations. 

The large oscillations appear when the original values abruptly change around the poles. In the case shown in Fig. 2, the 

original values near the North Pole are one, but the value at the North Pole abruptly becomes zero due to the pole conditions 

of Eq. 3 . When 𝑁 𝐽 for even 𝑚 0 , the forward transform followed by the inverse transform does not change the 25 

original values, and the oscillations do not appear. For this reason, Yoshimura and Matsumura (2005) and Yoshimura (2012) 

set 𝑁 𝐽 for even m, to improve stability. The result in the method of Cheong for odd |𝑚| 3  is not shown in Fig. 2 because 

the method does not satisfy the condition of Eq. 3  for odd 𝑚. 

In the new DFS method described in Sect. 2, the usual small oscillations from the Gibbs phenomenon appear in Fig. 2, but 

the error is small because the expansion coefficients are calculated using the least-squares method (or the Galerkin method) to 30 
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minimize the error. Because of this, the truncation with arbitrary 𝑁 𝐽 does not cause large oscillations in the new DFS 

method. 

Even when using the basis functions of Orszag in Eq. 2 , we can obtain results equivalent to the new DFS method by 

calculating the expansion coefficients using the least-squares method with Lagrange multipliers to minimize the error while 

satisfying the pole conditions in Eq. 4 . 5 

4 Shallow water model on a sphere 

4.1 Equations 

The prognostic equations of the shallow water model on a sphere are 

𝑑𝒗
𝑑𝑡

2 𝜴 𝒗 𝑔∇ℎ,                                                                                   104  

𝑑 ℎ ℎ
𝑑𝑡

ℎ ℎ ∇ ∙ 𝒗,                                                                         105  10 

where 𝑡 is time, 𝒗 is the horizontal wind vector, ℎ is the height, ℎ  is the surface height, 𝑔 is the acceleration due to gravity, 𝜴 

is the 3-dimensional angular velocity of the earth’s rotation, and the subscript H indicates the horizontal component. Equation 

104  is transformed for the advective treatment of the Coriolis term (Temperton, 1997) into 

𝑑 𝒗 2𝜴 𝒓
𝑑𝑡

𝑔∇ℎ,                                                                                 106  

where 𝒓 is the 3-dimensional position vector from the Earth’s center. Equation 105  is transformed for the spatially averaged 15 

Eulerian treatment of mountains (Ritchie and Tanguay, 1996) into 

𝑑ℎ
𝑑𝑡

ℎ ℎ ∇ ∙ 𝒗 𝒗 ∙ ∇ℎ .                                                                         107  

4.2 Time integration method 

A two-time-level semi-implicit semi-Lagrangian scheme (e.g., Temperton et al., 2001) and the Stable Extrapolation Two-

Time-Level Scheme (SETTLS; Hortal, 2002) are adopted to discretize Eqs. 106  and 107  in time as 20 

𝒗 2𝜴 𝒓 𝒗 2𝜴 𝒓
Δ𝑡

𝑔 ∇ℎ ∇ℎ
2

𝛽𝐯
𝑔 ∇ℎ ∇ℎ

2
𝛽𝐯

𝑔 ∇ℎ ∇ℎ
2

             108  

ℎ ℎ
Δ𝑡

ℎ ℎ 𝐷 ℎ ℎ 𝐷
2

𝒗 ∙ ∇ℎ 𝒗 ∙ ∇ℎ
2

                                                      

𝛽
ℎ𝐷 ℎ𝐷

2
𝛽

ℎ𝐷 ℎ𝐷

2
,                       109  

where 
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𝐷 ≡ ∇ ∙ 𝒗
1
𝑎

1
cos 𝜙

𝜕𝑢
𝜕𝜆

1
cos 𝜙

𝜕𝑣 cos 𝜙
𝜕𝜙

                                                                       110  

is horizontal divergence; ∆𝑡 is a timestep; the superscripts , 0, and  mean past time 𝑡 ∆𝑡 , present time 𝑡 , and future 

time 𝑡 ∆𝑡 , respectively, and the superscript  means future time 𝑡 ∆𝑡  extrapolated in time, for example, ℎ

2ℎ ℎ ; the subscript D means the departure point, and the absence of the subscript D means the arrival point; ℎ is a constant 

value of height for semi-implicit linear terms; 𝛽𝒗 and 𝛽  are second-order decentering parameters (Yukimoto et al., 2011). 5 

Using 𝛽𝒗 and 𝛽  larger than 1.0 (e.g., 1.2) increases the effect of the semi-implicit scheme improving computational stability, 

but 𝛽𝒗 𝛽 1.0 is used here because ℎ larger than ℎ is enough for stable calculations in the shallow water model. The 

departure point 𝒙  is the upstream horizontal position from the arrival point 𝒙 along the wind vector between present time 𝑡  

and future time 𝑡 ∆𝑡 . Here, the arrival point 𝒙 is on a grid point, and the departure point 𝒙  is not generally on a grid point. 

Since the right-hand sides of Eqs. 108  and 109  are the time average between present time 𝑡  and future time 𝑡 ∆𝑡  10 

and the spatial average between the departure point and the arrival point, these equations have second-order precision in time 

and space. In SETTLS, 𝒙  is calculated using 

𝒙 𝒙
𝒗 𝒗

2
∆𝑡.                                                                                              111  

However, when ∆𝑡 is longer than 30 minutes, using 𝒗  extrapolated in time to calculate 𝒙  causes numerical instability in 

our experiments. To avoid instability when ∆𝑡 is 1 hour, here we use 15 

𝒙 𝒙
𝒗 𝒗

2
∆𝑡,                                                                                                 112a  

𝒗 ≡ 𝒗 2𝜴 𝒓 2𝜴 𝒓
𝑔 ∇ℎ ∇ℎ

2
Δ𝑡,                               112b  

instead of Eq. 111 , where 𝒗′  is a provisional future value obtained by discretizing Eq. 106  in an explicit semi-

Lagrangian scheme. From Eq. 112 , we obtain 

𝒙 𝒙 ∆𝑡 𝒗 𝜴 𝒓
𝑔∆𝑡∇ℎ

4
𝜴 𝒓

𝑔∆𝑡∇ℎ
4

.                               113  20 

This method using a provisional future value to calculate 𝒙  is similar to the method in Gospodinov et al., (2001). Since the 

value with the subscript D depends on 𝒙 , 𝒙  is calculated iteratively from Eq. 113  (e.g., Ritchie, 1995; Temperton et al., 

2001). Since 𝒙  is not generally on the grid point, the value at 𝒙  is calculated by spatial interpolation from nearby grid points. 

In the right-hand side of Eq. 113 , the value at 𝒙  with the subscript D is calculated by third-order Lagrange interpolation. 

Eqs. 108  and 109  are transformed into  25 

𝒗
𝛽𝐯Δ𝑡

2
𝑔∇ℎ  𝑹𝒗,                                                                                                                                             114a  

𝑹𝒗 ≡  𝐯 2𝜴 𝒓
Δ𝑡
2

𝑔 ∇ℎ 𝛽𝐯∇ℎ 𝛽𝐯∇ℎ 2𝜴 𝒓
Δ𝑡
2

𝑔 ∇ℎ 𝛽𝐯∇ℎ ,     114b  
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ℎ
𝛽 Δ𝑡

2
ℎ𝐷 𝑅 ,                                                                                                                                                115a  

𝑅 ≡ ℎ
Δ𝑡
2

ℎ ℎ 𝐷 𝒗 ∙ ∇ℎ 𝛽 ℎ𝐷 𝛽 ℎ𝐷                                                                 

Δ𝑡
2

ℎ ℎ 𝐷 𝒗 ∙ ∇ℎ 𝛽 ℎ𝐷 .                            115b  

In Eqs. 114b  and 115b , the values at 𝒙  with the subscript D are calculated by fifth-order and third-order Lagrange 

interpolations, respectively, since high-order interpolation of wind vector components increases the accuracy of the model’s 5 

results in our experiments. From Eq. 114 , we obtain 

𝐷
𝛽𝐯Δ𝑡

2
𝑔∇ ℎ  𝑅 ,                                                                                              116  

𝜁  𝑅 ,                                                                                              117  

where 

𝜁 ≡ 𝒌 ∙ ∇ 𝒗
1
𝑎

1
cos 𝜙

𝜕𝑣
𝜕𝜆

1
cos 𝜙

𝜕𝑢 cos 𝜙
𝜕𝜙

                                                          118  10 

is vorticity, 𝒌 ≡ 𝒓 |𝒓|⁄  is the vertical unit vector, 𝑅 ≡ ∇ ∙ 𝑹𝒗 and 𝑅 ≡ 𝒌 ∙ ∇ 𝑹𝒗. 

We calculate ℎ  and 𝒗  using the spectral transform method and the Galerkin method with the new DFS method as follows. 

1. The scalar variable 𝑅  is transformed from grid space to spectral space using Eqs. 19  to 25 . The components of the 

vector variable 𝑹𝒗 𝑅 , 𝑅  in grid space are transformed to 𝑅  and 𝑅  in spectral space using Eqs. 51  to 62 , where 

𝑅  and 𝑅  are the velocity potential and the stream function of 𝑹𝒗, respectively. 15 

2. 𝑅  and 𝑅  are calculated by 

𝑅 ∇ 𝑅 ,                                                                                          119  

𝑅 ∇ 𝑅 ,                                                                                          120  

using Eqs. 89  and 91 . 𝜁  is obtained from 𝑅  using Eq. 117 . 

3. Equations 115a  and 119  are substituted into Eq. 116  and we obtain 20 

𝐷
Δ𝑡
2

𝛽𝐯𝛽 𝑔ℎ∇ 𝐷  ∇ 𝑅
Δ𝑡
2

𝛽𝐯𝑔𝑅 .                                              121  

𝐷  is calculated by solving the Helmholtz-like equation Eq. 121  using Eqs. 97  and 99 . 

4. ℎ  is calculated from 𝐷  and 𝑅  using Eq. 115 . 

5. 𝜒  and 𝜓  are calculated from 𝐷  and 𝜁  by solving the Poisson equations 

∇ 𝜒 𝐷 ,                                                                                        122  25 

∇ 𝜓 𝜁 ,                                                                                        123  

using Eqs. 89  and 92 . 

6. 𝐯 𝑢 , 𝑣  is calculated from 𝜒  and 𝜓  using Eq. 49  for 𝑢 ,  and the similar equations for 𝑢 , , 𝑣 , , and 𝑣 , . 
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7. 𝑢 , 𝑣 , ℎ , 𝐷 , and ∇ℎ  in spectral space are transformed to grid space. ℎ  and 𝐷  are transformed meridionally using 

Eqs. 9  and 10 . 𝑢  and 𝑣  are transformed meridionally using Eq. 48 . ∇ℎ ℎ , ℎ  is transformed meridionally 

using Eqs. 14  to 17 . ℎ  can also be calculated from ℎ , 𝜃  and ℎ , 𝜃  at the latitudinal grid points using Eq. 

12 , and additionally using Eq. 18  at the poles when using Grid [1], which is more efficient than using Eqs. 14) and 

15  because the meridional inverse discrete cosine and sine transforms of ℎ  become unnecessary. 5 

5 Results of shallow water test cases 

5.1 Models 

We ran Williamson test cases 2 and 5 (Williamson et al., 1992) and the Galewsky test case (Galewsky et al., 2004) in the 

semi-implicit semi-Lagrangian shallow water model using the new improved DFS method described in Sect. 2 (hereafter the 

new DFS model). We also ran the same test cases in the semi-implicit semi-Lagrangian shallow water model using the DFS 10 

method of Yoshimura and Matsumura (2005) with the basis functions of Cheong (2000a, 2000b) (hereafter the old DFS model), 

and in the model using the SH method (hereafter the SH model) for comparison. The new DFS model was run for each of Grid 

[0], [1], and [−1]. In the old DFS model, Grid [0] was used. In the SH model, the Gaussian grid was used. We use a regular 

longitude-latitude grid, not a reduced grid. We use the timestep ∆𝑡 3600 s at about 300 km resolution with around 128  64 

grid points, ∆𝑡 600 s at about 20 km resolution with 1920  960 grid points, and ∆𝑡 90 s at about 1.3 km resolution with 15 

30720  15360 grid points, where 128  64, for example, indicates the number of longitudinal grid points 𝐼 128 and the 

number of latitudinal grid points 𝐽 64. Horizontal diffusion is not used in all test cases. The zonal Fourier filter described in 

Sect. 2.11 is used in the DFS models. We have confirmed that numerical instability occurs in some test cases in the old DFS 

model without the zonal Fourier filter, but stable integration is possible in all test cases shown here in the new DFS model, 

even without the zonal Fourier filter. 20 

The zonal Fourier transforms in all of the models and the meridional Fourier cosine and sine transforms in the DFS models 

are calculated using the Netlib BIHAR library, which is a double precision version of the Netlib FFTPACK library 

(Swarztrauber, 1982). The meridional Legendre transform in the SH model is calculated using the ISPACK library (Ishioka, 

2018), which adopts on-the-fly computation of the associated Legendre functions. We use the ISPACK library’s optimization 

option for Intel AVX512, which is highly optimized by using assembly language together with Fortran. 25 

5.2 Williamson test case 2 

The Williamson test case 2 simulates a steady state non-linear zonal geostrophic flow. In this test case, the angle between 

the solid body rotation and the polar axis 𝛼 is given, and the zonal and meridional components of 2𝜴 𝒓 become 

2𝜴 𝒓 2Ω𝑎 cos 𝜃 cos 𝛼 cos 𝜆 sin 𝜃 sin 𝛼 , 2Ω𝑎 sin 𝜆 sin 𝛼 .                              124  
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Figure 3 shows the time series of forecast errors of the height for a 5-day integration in the Williamson test case 2 with 𝛼

𝜋 2⁄ 0.05 in the models with around 128  64 grid points and truncation wavenumber 𝑁 63 (DFS) or 𝑁 62 (SH), using 

no horizontal diffusion. The L , L , and L∞ errors are almost the same among the new DFS models using Grids [0], [1] and 

[−1], the old DFS model and the SH model. 

5.3 Williamson test case 5 5 

The Williamson test case 5 simulates zonal flow over an isolated mountain. Figure 4 shows the predicted height after a 15-

day integration in Williamson test case 5 with ℎ 5960 m. The result of the high-resolution SH model with 1920  960 grid 

points is regarded as the reference solution. Horizontal diffusion is not used. The errors with respect to the reference solution 

are almost the same for the new DFS models, the old DFS model, and the SH model with around 128  64 grid points. Figure 

5 shows the longitudinal distributions of meridional wind at the grid points near the South Pole after a 15-day integration in 10 

the old and new DFS models using Grid [0] with 128  64 and 1920  960 grid points. While the zonal wavenumber 1 

component is dominant in the new DFS model with 128  64 grid points, high zonal wavenumber noise appears in the old 

DFS model with 128  64 grid points. This difference is because the new DFS expansion method with the least-squares method 

improves numerical stability. By using this new expansion method, the high zonal wavenumber noise does not appear even in 

the model that does not use the new DFS basis functions in Eq. 7  but uses the same DFS basis functions as in Eq. 7  except 15 

that the basis function for odd 𝑚 3 is sin 𝜃 cos 𝑛𝜃 instead of sin 𝜃 sin 𝑛𝜃. The result of this model is almost the same as 

that of the new model (Figure not shown). In the old DFS model at high resolution with 1920  960 grid points, the high 

wavenumber noise is not seen in Fig. 5. The higher the resolution, the smaller the high wavenumber noise becomes. Figure 6 

shows the kinetic energy spectra of the horizontal winds (Lambert, 1984) after a 15-day integration in Williamson test case 5. 

The kinetic energy spectra in the DFS models are calculated from the SH expansion coefficients, which are obtained by firstly 20 

calculating the Gaussian grid-point values from the DFS coefficients using Eq. 8  for the new DFS method and Eq. 6  for 

the old DFS method, and secondly calculating the SH expansion coefficients from the Gaussian grid-point values by using a 

forward Legendre transform. In the old DFS model with 128  64 grid points, the high wavenumber components are larger 

than in the other models, which is related to the high wavenumber noise near the South Pole in Fig. 5. In the old DFS model 

with 1920  960 grid points, the high wavenumber components are a little larger than in the other models, but the differences 25 

are slight. 

Figure 7 shows the predicted height after a 15-day integration in Williamson test case 5, which is the same as Fig. 4 except for 

the truncation wavenumber 𝑁. In our semi-implicit semi-Lagrangian models, we usually use 𝑁 satisfying 𝑁 ≅ 𝐽 1 (𝐽 is the 

number of latitudinal grid points), which is called linear truncation. However, here 𝑁 is determined to satisfy 𝑁 ≅ 2 𝐽 1 3⁄  

to eliminate aliasing errors with quadratic nonlinearity (Orszag, 1971), which is called quadratic truncation. When using the 30 

quadratic truncation 𝑁 42, the new DFS models with Grids [0], [1], and [−1] are stable without horizontal diffusion, but the 

old DFS model without strong high-order horizontal diffusion is unstable. The numerical instability in the old DFS model 
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occurs because of the high-wavenumber oscillations due to the quadratic wavenumber truncation for even 𝑚 0 , as 

explained in Sect. 3. The results for the new DFS models are almost the same as for the SH model. Figure 8 shows the kinetic 

energy spectrum of the horizontal winds after a 15-day integration in Williamson test case 5, which is the same as Fig. 6 except 

for the truncation wavenumber 𝑁. At the resolution 𝑁 42 with 128  64 grid points, the high wavenumber components are 

a little larger in the SH model than in the new DFS model. At the resolution 𝑁 639 with 1920  960 grid points, small 5 

oscillations appear in the high wavenumber region in the SH model, but not in the new DFS models. In the SH model, the 

wind components 𝑢 and 𝑣 divided by sin 𝜃 are transformed from grid space to spectral space (Ritchie, 1988; Temperton, 1991), 

which seems to be the cause of the small oscillation in the high wavenumber region. Another way to transform 𝑢 and 𝑣 from 

grid space to spectral space in the SH model is to use the vector harmonic transform (see Sect. 2.8), which avoids dividing 𝑢 

and 𝑣 by sin 𝜃 and improves the stability of the model (Swarztrauber, 2004). This approach is similar to the expansion method 10 

for 𝑢 and 𝑣 using the least-squares method in the new DFS method described in Sects. 2.7 and 2.8, and probably solves the 

problem with the high wavenumber components in the SH model. Alternatively, using 𝐷  and 𝜁  instead of 𝑢  and 𝑣  as 

prognostic variables may mitigate this problem. 

5.4 Galewsky test case 

The Galewsky test case simulates a barotropically unstable mid-latitude jet. Figure 9 shows the predicted vorticity after a 6-15 

day integration in the Galewsky test case for the models at 1.3 km resolution with 30720  15360 grid points and the quadratic 

truncation 𝑁 10239, without horizontal diffusion. The result in the new DFS model using Grid [0] is almost the same as in 

the SH model. The old DFS model is unstable for the same reason as that shown in Fig. 7. Figure 10 shows the kinetic energy 

spectrum of horizontal winds after a 6-day integration in the Galewsky test case. The results are almost the same for the DFS 

models using Grid [0], [1] and [-1], and the SH model, but small oscillations appear near the truncation wavenumber in the 20 

SH model. This is probably for the same reason as in Williamson test case 5 in Fig. 8. 

5.5 Elapsed time 

Figure 11 shows the elapsed time for the 15-day integration in the Williamson test case 5 in the SH model and the new DFS 

model using Grid [0] at 20 km resolution with 1920  960 grid points and 𝑁 958 (SH) or 𝑁 959 (DFS), and that for the 

6-day integration in the Galewsky test case at 1.3 km resolution with 30720  15360 grid points and 𝑁 10239. We use one 25 

node (with two Intel Xeon Gold 6248 CPUs with 20 cores per CPU) of the FUJITSU Server PRIMERGY CX2550 M5 in the 

MRI. OpenMP parallelization is used, but MPI parallelization is not used. The elapsed time in the SH model is larger than in 

the DFS model, although the Legendre transform in the SH model is highly optimized for Intel AVX512. The higher the 

resolution, the larger is the difference of the elapsed time between the models. This is because the Legendre transform used in 

the SH model requires O 𝑁  operations while the Fourier cosine and sine transforms used in the DFS model require only 30 

O 𝑁 log 𝑁  operations. 
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6 Conclusions and perspectives 

We have developed the new DFS method to improve the numerical stability of the DFS model, which has the following two 

improvements: 

1. A new expansion method with the least-squares method is used to calculate the expansion coefficients so that the error due 

to the meridional wavenumber truncation is minimized. The method also avoids dividing by sin 𝜃 before taking the forward 5 

Fourier cosine or sine transform. 

2. New DFS basis functions that guarantee that not only scalar variables, but also vector variables and the gradient of scalar 

variables, are continuous at the poles. 

The equations obtained with the least-squares method are equivalent to those obtained with the Galerkin method. We also use 

the Galerkin method to solve partial differential equations such as the Poisson equation and the shallow water equations. 10 

To test the new DFS method, we conducted experiments for the Williamson test cases 2 and 5, and the Galewsky test case 

in semi-implicit semi-Lagrangian shallow water models using the new DFS method with the three types of equally spaced 

latitudinal grids with or without the poles. We compared the results of the new DFS models using the new DFS method with 

the old DFS model using the method of Yoshimura and Matsumura (2005), and with the SH model. 

The high zonal wavenumber noise of the meridional wind appears near the poles in the old DFS model, but not in the new 15 

DFS models. This is because the new DFS expansion method with the least-squares method improves the model’s stability. In 

the old DFS model, a truncation wavenumber 𝑁 lower than the number of latitudinal grid points 𝐽 for even 𝑚 0 causes 

numerical instability. In the new DFS model, an arbitrary meridional wavenumber truncation 𝑁 𝐽 can be used without the 

stability problem because the error due to meridional wavenumber truncation is small when using the new DFS expansion 

method with the least-squares method. This is one of the merits of the new DFS method because the quadratic truncation 20 

𝑁 ≅ 2 𝐽 1 3⁄  or the cubic truncation 𝑁 ≅ 𝐽 1 2⁄  is usually used in the Eulerian model and is also becoming to be 

used in the semi-Lagrangian model instead of the linear truncation 𝑁 ≅ 𝐽 1  for stability and efficiency at high resolutions 

(Hotta and Ujiie, 2018; Dueben et al., 2020). We have also confirmed that in the new DFS model, stable integration is possible 

in all test cases shown here even without using the zonal Fourier filter unlike in the old DFS model. Thus, the numerical 

stability of the semi-implicit semi-Lagrangian model using the new DFS method is very good. 25 

The results of the new DFS shallow water model are almost the same as the SH shallow water model. But in the SH model 

without horizontal diffusion, small oscillations appear in the high wavenumber region of the kinetic energy spectrum in some 

cases, unlike in the new DFS model. This seems to be because the wind components 𝑢 and 𝑣 divided by sin 𝜃 are transformed 

from grid space to spectral space in the SH model. This problem with the SH model can probably be solved by using the vector 

harmonic transform, which is similar to the expansion method for 𝑢 and 𝑣 using the least-squares method in the new DFS 30 

model. 

The elapsed time in the new DFS model is shorter than in the SH model especially at high resolution because the Fourier 

transform requires only O 𝑁 log 𝑁  operations, and the Legendre transform in the SH model requires O 𝑁  operations. 
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We developed hydrostatic and nonhydrostatic global atmospheric models using the old DFS method (Yoshimura and 

Matsumura, 2005; Yoshimura, 2012) and conducted typhoon prediction experiments in the nonhydrostatic global atmospheric 

model using the old DFS method in the Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving 

TYphoon forecast (TYMIP-G7; Nakano et al., 2017). We have already developed a nonhydrostatic (or hydrostatic) 

atmospheric model using the new DFS method, which will be described in another paper after improving the nonhydrostatic 5 

dynamical core as needed. 

 

Code availability. The source codes of the DFS and SH shallow water models are available in the Supplement to the article 

and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 

license. These models utilize the Netlib BIHAR library and the ISPACK library. The Netlib BIHAR library is available at 10 

https://www.netlib.org/bihar/ and is also included in the Supplement. The ISPACK library is available at https://www.gfd-

dennou.org/arch/ispack/ispack-3.0.1.tar.gz. 

 

Data availability. The results of model experiments are available at https://climate.mri-

jma.go.jp/pre/Yoshimura_DFS_SW_Testcase_2021/. 15 

 

Appendix A: Trigonometric identities 

We list here the trigonometric identities used in transforming the expressions in this paper. 

The following identities are satisfied: 

sin 𝑛𝜃 cos 𝑛′𝜃
1
2

sin 𝑛 𝑛′ 𝜃 sin 𝑛 𝑛′ 𝜃                                             A1a  20 

cos 𝑛𝜃 sin 𝑛′𝜃
1
2

sin 𝑛 𝑛′ 𝜃 sin 𝑛 𝑛′ 𝜃                                             A1b  

cos 𝑛𝜃 cos 𝑛′𝜃
1
2

cos 𝑛 𝑛′ 𝜃 cos 𝑛 𝑛′ 𝜃                                             A1c  

sin 𝑛𝜃 sin 𝑛′𝜃
1
2

cos 𝑛 𝑛′ 𝜃 cos 𝑛 𝑛′ 𝜃                                         A1d  

From Eq. A1 , the following identities are derived: 

sin 𝜃 cos 𝑛𝜃
1
2

sin 𝑛 1 𝜃 sin 𝑛 1 𝜃                                                       A2a  25 

sin 𝜃 sin 𝑛𝜃
1
2

cos 𝑛 1 𝜃 cos 𝑛 1 𝜃                                                 A2b  

sin 𝜃 sin 𝑛𝜃
1
4

sin 𝑛 2 𝜃 2 sin 𝑛𝜃 sin 𝑛 2 𝜃                              A2c  
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sin 𝜃 cos 𝑛𝜃
1
4

cos 𝑛 2 𝜃 2 cos 𝑛𝜃 cos 𝑛 2 𝜃                            A2d  

From Eq. A1 , the following orthogonal relations in longitude are derived: 

cos 𝑚𝜆 cos 𝑚′𝜆 𝑑𝜆
2𝜋      for 𝑚 𝑚′ 0
𝜋        for 𝑚 𝑚′ 0
0        for 𝑚 𝑚′         

                                            A3a  

cos 𝑚𝜆 sin 𝑚′𝜆 𝑑𝜆 0                                                                                     A3b  

sin 𝑚𝜆 sin 𝑚′𝜆 𝑑𝜆 𝜋        for 𝑚 𝑚′ 0
0        for 𝑚 𝑚′         

                                             A3c  5 

Similarly, from Eq. A1 , the following orthogonal relations in latitude are derived: 

cos 𝑛𝜃 cos 𝑛′𝜃 𝑑𝜃

𝜋         for 𝑛 𝑛′ 0
1
2

𝜋      for 𝑛 𝑛′ 0

 0         for 𝑛 𝑛′         

                                           A4a  

sin 𝑛𝜃 sin 𝑛′𝜃 𝑑𝜃
1
2

𝜋        for 𝑛 𝑛′ 0

  0          for 𝑛 𝑛′         
                                           A4b  

By using Eq. A1 , the following relations are derived: 

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃 cos 𝑛𝜃

𝑛 𝑙
2

sin 𝜃 cos 𝑛 1 𝜃
𝑛 𝑙

2
sin 𝜃 cos 𝑛 1 𝜃                        A5a  10 

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃 cos 𝑛𝜃
𝑛 𝑙 𝑛 𝑙 1

4
sin 𝜃 cos 𝑛 2 𝜃                                           

2𝑛 2𝑙 2𝑙
4

sin 𝜃 cos 𝑛𝜃
𝑛 𝑙 𝑛 𝑙 1

4
sin 𝜃 cos 𝑛 2 𝜃          A5b  

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃 sin 𝑛𝜃

𝑛 𝑙
2

sin 𝜃 sin 𝑛 1 𝜃
𝑛 𝑙

2
sin 𝜃 sin 𝑛 1 𝜃                         A5c  

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃

𝜕
𝜕𝜃

sin 𝜃 sin 𝑛𝜃
𝑛 𝑙 𝑛 𝑙 1

4
sin 𝜃 sin 𝑛 2 𝜃                                           

2𝑛 2𝑙 2𝑙
4

sin 𝜃 sin 𝑛𝜃
𝑛 𝑙 𝑛 𝑙 1

4
sin 𝜃 sin 𝑛 2 𝜃          A5d  15 

Appendix B: Calculation of global mean and latitudinal area weight 

The global mean value of 𝑇 , 𝜆, 𝜃  in Eq. 11  can be calculated in spectral space by 

𝐺
1

4𝜋
𝑇 , 𝜃 cos 𝑚𝜆 𝑇 , 𝜃 sin 𝑚𝜆 sin 𝜃 𝑑𝜃𝑑𝜆                                               
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1
2

𝑇 , cos 𝑛𝜃 sin 𝜃 𝑑𝜃
𝑇 ,

1 𝑛
.

   

                                            B1  

The latitudinal area weight at each latitude 𝜃  is calculated as follows: 

1. The latitudinal distribution of 𝑇  𝜃  for each 𝑗 is given as 

𝑇  𝜃
1   for 𝑘 𝑗
0   for 𝑘 𝑗     0 𝑘 𝐽 1 .                                                                 B2  

2. From 𝑇  𝜃 , the meridional expansion coefficients 𝑇 ,
  0 𝑛 𝑁  are calculated by forward discrete cosine 5 

transform described in Sect. 2.10. 

3. The value of 𝐺 calculated from 𝑇 ,
  using Eq. C1  is considered as the latitudinal area weight 𝑤  at latitude 𝜃 . 

The latitudinal area weight 𝑤 𝜃  is used, for example, to calculate the global mean in the grid space. 
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Figure 1. Grid [0], Grid[1], and Grid [−1] are three ways of arranging equally spaced latitudinal grid points when the grid 

interval ∆𝜃 𝜋 4⁄ . Red circles show the positions of the grid points. 

  5 
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Figure 2. Change in values due to the meridional wavenumber truncation for (a) even |𝑚| 2, and (b) odd |𝑚| 3. We use 

Grid [0] with the number of latitudinal grid points 𝐽 64. Original values (black) are meridionally transformed from grid 

space to spectral space, truncated with 𝑁 42, and transformed back from spectral space to grid space. Blue: Orszag’s 5 

expansion method. Green: Cheong’s expansion method. Red: the new expansion method. 
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Figure 3. Time series of prediction error of height m  for 5 days (120 hours) integration in Williamson test case 2 

𝛼 𝜋 2⁄ 0.05 . 128  64 indicates the numbers of longitudinal and latitudinal grid points. N is the truncation wavenumber. 

Solid, dashed, and dotted lines represent L , L , and L∞ errors, respectively. The colors blue, green, red, purple, and orange 5 

represent the models using SH, old DFS with Grid [0], new DFS with Grid [0], new DFS with Grid [1], and new DFS with 

Grid [−1], respectively. 
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Figure 4. Predicted height m  after a 15-day integration in Williamson test case 5. (a) New DFS model with Grid [0]. (b) 

New DFS model with Grid [1]. (c) New DFS model with Grid [−1]. (d) Old DFS model with Grid [0]. (e) SH model. (f) SH 

model at high resolution, which is regarded as the reference solution. The number of longitudinal (I) and latitudinal (J) grid 5 

points is shown in the form I  J. N is the truncation wavenumber. Color shading shows the error with respect to the reference 

solution. 
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Figure 5. Longitudinal distributions of meridional wind m s  at the grid points near the South Pole after a 15-day 

integration in Williamson test case 5. Results of the models using Grid [0] with (a) 128  64 grid points and truncation 5 

wavenumber 𝑁 63, and (b) 1920  960 grid points and 𝑁 959. Green (red) lines represent the old (new) DFS models. 
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Figure 6. Kinetic energy spectrum of horizontal winds m s  after a 15-day integration in Williamson test case 5. Results 

of the models with (a) around 128  64 grid points and 𝑁 63 (DFS) or 𝑁 62 (SH), and (b) around 1920  960 grid points 5 

and 𝑁 959 or 958. The colors blue, green, red, purple, and orange represent the models using SH, old DFS with Grid [0], 

new DFS with Grid [0], new DFS with Grid [1], and new DFS with Grid [−1], respectively. 
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Figure 7. Same as Fig. 4, except with truncation wavenumber 𝑁. 
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Figure 8. Same as Fig. 6, except with truncation wavenumber 𝑁. 
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Figure 9. Predicted vorticity s  after a 6-day integration in the Galewsky test case. (a) The new DFS model with Grid [0], 

and (b) the SH model at 1.3 km resolution with 30720  15360 grid points and 𝑁 10239.  

  5 
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Figure 10. Kinetic energy spectrum of horizontal winds m s  after a 6-day integration in the Galewsky test case. (a) 

Results of the models with 30720  15360 grid points. The colors blue, green, and red represent the models using SH, old DFS 

with Grid [0], and DFS with Grid [0], respectively. (b) As (a), but showing the high-wavenumber region. 5 
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Figure 11. Elapsed time s  for (a) 15-day integration in Williamson test case 5 in the SH model and the new DFS model at 

20 km resolution with 1920  960 grid points, and (b) 6-day integration in the Galewsky test case at 1.3 km resolution with 

30720  15360 grid points. There is no monitoring output during elapsed time measurement.  5 

 

 

https://doi.org/10.5194/gmd-2021-168
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.


